

Energy Trust of Oregon Energy Efficiency Resource Assessment Overview and Considerations for Improvements September 22, 2017

Agenda

- Purpose and background
- Modeling Process
 - Considerations for improvements

About

- Independent nonprofit
- Serving 1.6 million customers of Portland General Electric, Pacific Power, NW Natural, Cascade Natural Gas and Avista
- Providing access to affordable energy
- Generating homegrown, renewable power
- Building a stronger Oregon and SW Washington

Purpose and Background

Resource Assessment Overview

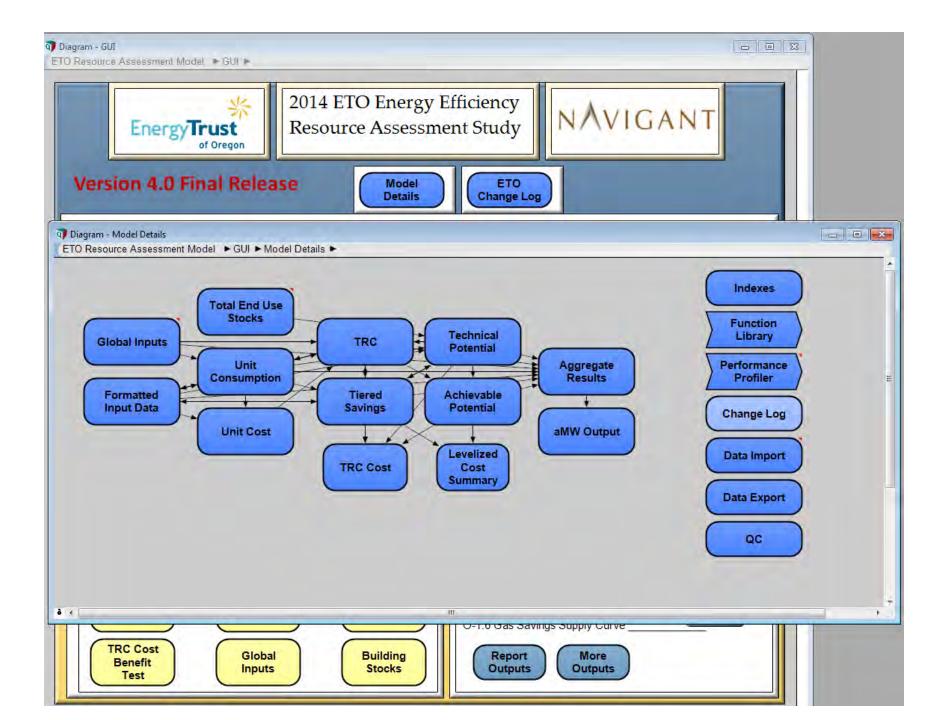
What is a resource assessment?

 Estimate of cost-effective energy efficiency resource potential that is achievable over a 20-year period

Energy Trust uses a model in *Analytica* that was developed by Navigant in 2015

Background – How is RA used?

- Informs utility IRP work & strategic planning / program planning
- Does not dictate what annual savings are acquired by programs
- Does not set incentive levels



Modeling Process

Inputs

- Utility service territory data
 - Customer counts, 20-year load forecasts
 - Avoided costs, line losses, discount rate
- Building characteristics
 - Heating and hot water fuel, measure saturations
- Measure assumptions
 - Savings, costs, O&M, NEBs, measure life, load profile, end use, baseline, technical suitability, achievability rates

Not technically feasible	Technical Potential						
Not technically feasible	Market barriers	Achievable Potential					
Not technically feasible	Market barriers	Not cost-effective	Cost-Effective Potential				
Not technically feasible	Market barriers		Program design, market penetration	Program Savings Projection			

Cost-Effectiveness Testing

Total Resource Cost (TRC) test BCR

 TRC benefit cost ratio (BCR) = NPV of Benefits / Total Resource Cost

Benefits

- Savings x Avoided Costs
- Quantifiable non-energy benefits

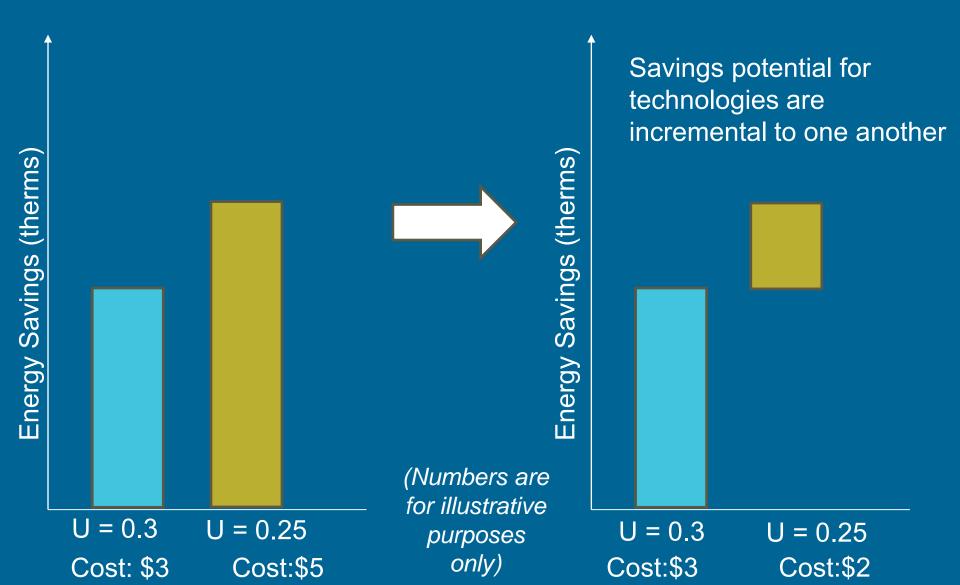
Total Resource Measure Costs

• Full cost of EE measure or incremental cost of installing efficient measure over baseline measure

Cost-Effectiveness Override in Model

Energy Trust applied this feature to measures found to be NOT Cost-Effective in the model but are offered through programs.

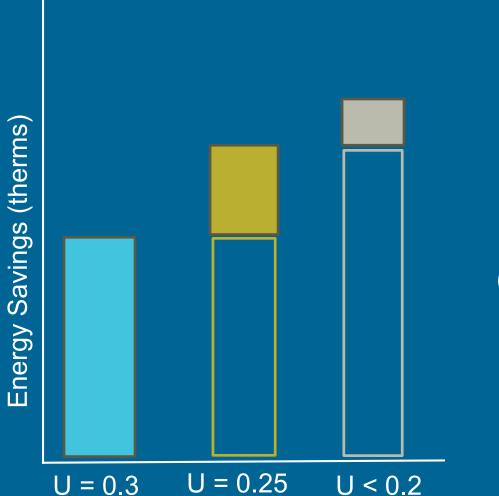
Reasons:


- 1. Blended avoided costs may produce different results than utility specific avoided costs
- 2. Measures expected to be cost-effective in the future are sometimes offered under an OPUC exception

Model Assumptions

- Uses incremental measure savings approach for potential instead of market shares
- Includes known emerging technologies
- Factors in known codes & standards
- Uses CBSA EUI data to translate utility load forecasts to stock forecasts
- Utilizes 3rd party research and survey work to inform measure saturation and density (e.g. RBSA)

Incremental Measure Savings Approach (competition groups)



Emerging Technologies

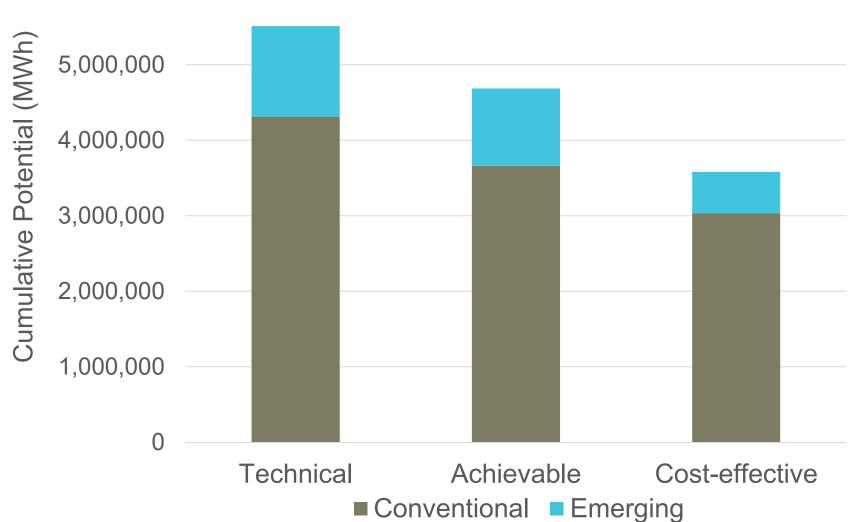
- Includes some emerging technologies
- Factors in changing performance and cost over time
- Uses risk factors to hedge against uncertainty

	Risk Factor for Emerging Technologies								
Risk Category	10% 30%		50%	70%	90%				
	High Risk:			Low Risk:					
Market Risk (25% weighting)		odel small er changes to re		 Trained contractors Established business models Already in U.S. Market Manufacturer committed to commercialization 					
Technical Risk (25% weighting)	High Risk: Prototype in first field tests. A single or unknown approach		New product with broad commercial appeal	Proven technology in different application or different region	Low Risk: Proven technology in target application. Multiple potentially viable approaches.				
Data Source Risk (50% weighting)	High Risk: Based only on manufacturer claims	Manufacturer case studies	Engineering assessment or lab test	Third party case study (real world installation)	Low Risk: Evaluation results or multiple third party case studies				

Define Emerging Tech. Measures Incrementally in Their Competition Groups

(Numbers are for illustrative purposes only)

Current Emerging Technologies


Residential	Commercial	Industrial			
 AFUE 98/96 Furnace ER SH to Heat Pump Heat Pump (HP Upgrade) Window Replacement (U<.20) Absorption Gas Heat Pump Water Heater Advanced CO2 Heat Pump Water Heater Smart Devices Home Automation Advanced Heat Pump HP Dryer 	 AC Heat Recovery, HW Advanced Package A/C RTU Advanced Refrigeration Controls Advanced Ventilation Controls Energy Recovery Ventilator Gas-fired HP HW Gas Fired HP, heating High Bay LED Highly Insulated Windows Smart/Dynamic Windows Supermarket Max Tech Refrigeration VIP, R-35 wall (vacuum insulated panel) Com - Hybrid IDEC- (indirect- direct evap. Cooler) 	 Advanced Refrigeration Controls Advanced LED Lighting Retrofits Gas-fired HP Water Heater Switched reluctance motors Wall Insulation- VIP, R0-R35 			

Emerging Tech. Under Development

Residential	Commercial	Industrial
 AFUE 98/96 Furnace CO2 HPWH update Deep Behavior Savings Net Zero Homes Window Attachments HP Dryer update 	 Rooftop HVAC/ DOAS High Efficiency Circulation Pumps Path to Net Zero Buildings Smart/Dynamic windows update 	 Engineered Compressed Air Nozzles

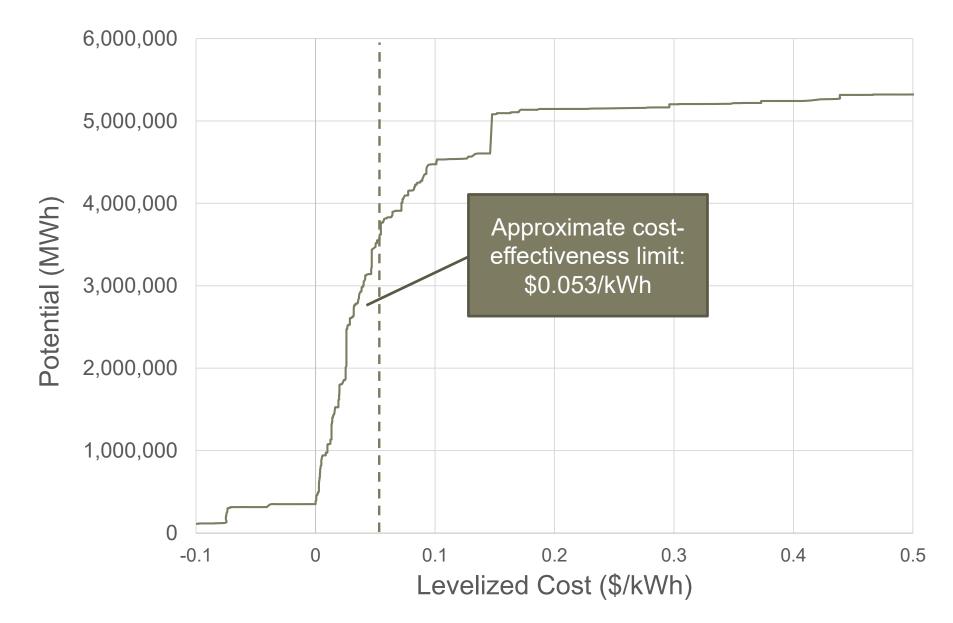
Contribution of Emerging Technologies

6,000,000

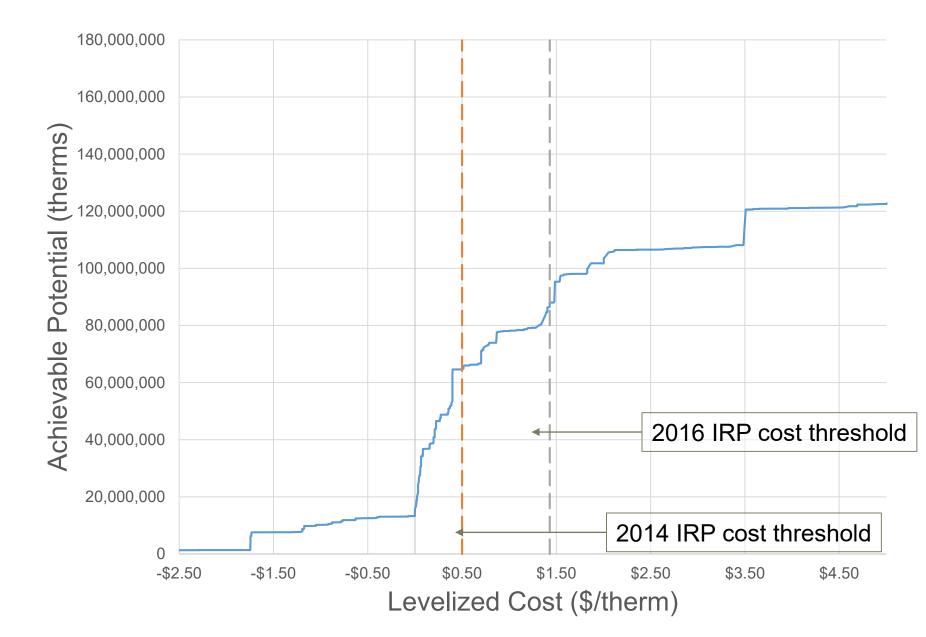
Example Measure: Residential Heat Pump Water Heater- Tier 1, Heating Zone 1

Key Measure Inputs:

- Baseline: 0.9 EF Water Heater (\$590)
- Measure Cost: \$1,230-\$1,835 (\$600 RETC)
- Competing Measures: Tier 2 HPWH, CO₂ HPWH
- Lifetime:12 years
- Conventional (not emerging, no risk adjustment)
- Customer Segments: SF, MF, MH
- Program Type: Replacement on Burnout
- Savings: 1,516-1,530 kWh
- Density, saturation, suitability
- No Non-Energy Benefits or O&M savings

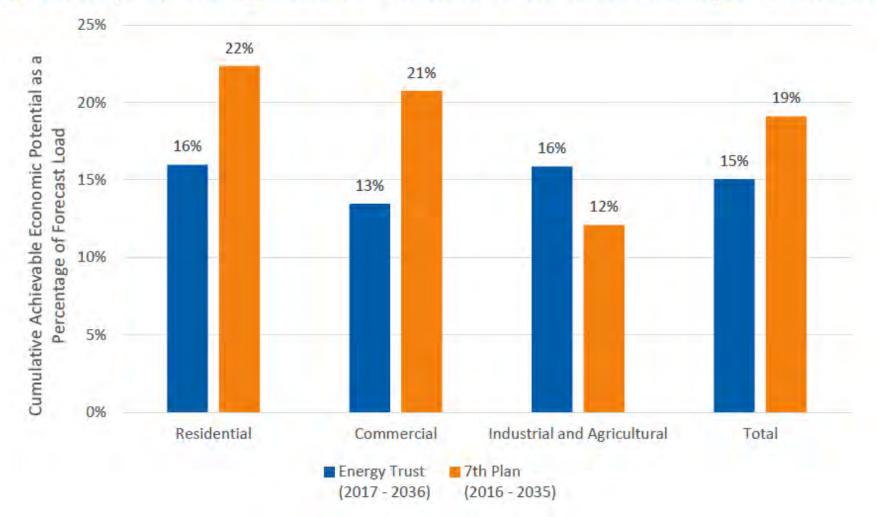

Example Measure: Residential Heat Pump Water Heater- Tier 1, Heating Zone 1

Q N	1id Value - Cost-effective Achievable Potential							• ×
mid▼	Mid Value of Cost-effective Achievable Potential (MWh, MW, MM Therms) Selected Replacement Type	Simulation	Year (year)	-	Totals			
		2017	2018	2019	2020	2021	2022	20 -
Rest	aurroom Faucer Aerators, 1.0 gpm- Gas	2010	20.0	2010	2020	2020	2020	
Res E	Bathroom Faucet Aerators, 1.5 gpm- Electric	0	0	0	0	0	0	
Res E	Bathroom Faucet Aerators, 1.5 gpm- Gas	0	0	0	0	0	0	
Res H	Kitchen Faucet Aerators, 1.5 gpm- Electric	24.71K	24.53K	24.34K	24.16K	23.98K	23.8K	23.6
Res H	Kitchen Faucet Aerators, 1.5 gpm- Gas	0	0	0	0	0	0	
Res H	(itchen Faucet Aerators, 2.0 gpm- Electric	0	0	0	0	0	0	
Res H	(itchen Faucet Aerators, 2.0 gpm- Gas	0	0	0	0	0	0	
Res S	Showerheads - Elec DHW	85.68K	85.04K	84.4K	83.77K	83.14K	82.52K	81.5
Res S	Showerheads - Gas DHW	2545	2526	2507	2489	2470	2451	24
Res S	Gmart Devices Home Automation (NEW)	727.4	1441	2146	2841	3464	4096	47)
Res S	Gmart Devices Home Automation (RET)	46.11K	44.72K	43.35K	41.99K	40.66K	39.34K	38.04
Res T	ankless Gas Hot Water Heater-Z1							
Res T	ankless Gas Hot Water Heater-Z1 (NEW ONLY)							
Res T	ankless Gas Hot Water Heater-Z2							
Res T	ankless Gas Hot Water Heater-Z2 (NEW ONLY)							
Res T	ïer 1 Heat Pump Water Heater- Z1	8026	15.38K	22.13K	28.31K	33.98K	39.17K	43.9
Res T	ïer 1 Heat Pump Water Heater- Z2							
Res T	ïer 2 Heat Pump Water Heater-Z1	0	0	0	1095	5519	13.2K	20.2
Res T	ïer 2 Heat Pump Water Heater-Z1 (NEW ONLY)	3167	6369	9645	13K	15.88K	19K	22.1
Res T	ïer 2 Heat Pump Water Heater-Z2							
Res T	ïer 2 Heat Pump Water Heater-Z2 (NEW ONLY)							=
Totals	5	2.575M	2.636M	2.687M	2.752M	2.822M	2.869M	2.975 🛪
•	III							► a


Example Measure- Tier 1 HPWH CE Achievable Potential x Deployment Curves = Deployed DSM Savings

Cost Effective Achievable Potential from RA model (MWh)										
	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Tier 1 HPWH Z1- Manuf.	782	1,500	2,157	2,760	3,312	3,818	4,282	4,708	5,098	5,455
Tier 1 HPWH Z1- Multifamily	3,060	5,865	8,436	10,792	12,953	14,933	16,749	18,413	19,938	21,336
Tier 1 HPWH Z1- Single Family	4,184	8,019	11,535	14,758	17,712	20,420	22,903	25,178	27,264	29,176
Total	8,026	15,384	22,128	28,310	33,977	39,172	43,934	48,299	52,300	55,968
Deployment Curves	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Com-NEW	145%	130%	130%	95%	90%	85%	85%	70%	90%	85%
Com-RET	10%	9%	9%	8%	7%	6%	6%	5%	5%	4%
Com-ROB	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
Ind-RET	9%	9%	10%	9%	8%	7%	7%	6%	6%	5%
Ind-ROB	85%	85%	85%	85%	85%	85%	85%	85%	85%	85%
RES-NEW	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%
RES-RET	11%	11%	10%	7%	6%	5%	4%	4%	4%	4%
RES-ROB	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
RES-CFL	4%	4%	5%	5%	5%	5%	5%	5%	5%	5%
Deployed Savings (MWh)										
	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Tier 1 HPWH Z1- Manuf.	704	1,350	1,941	2,484	2,981	3,436	3,854	4,237	4,588	4,910
Tier 1 HPWH Z1- Multifamily	2,754	5,278	7,592	9,713	11,658	13,440	15,074	16,571	17,944	19,203
Tier 1 HPWH Z1- Single Family	3,766	7,217	10,382	13,282	15,941	18,378	20,612	22,660	24,538	26,258
Total	7,224	13,845	19,915	25,479	30,579	35,255	39,540	43,469	47,070	50,371

PGE Supply Curve – 20 year potential



NWN Supply Curve – 20 Year Achievable Potential

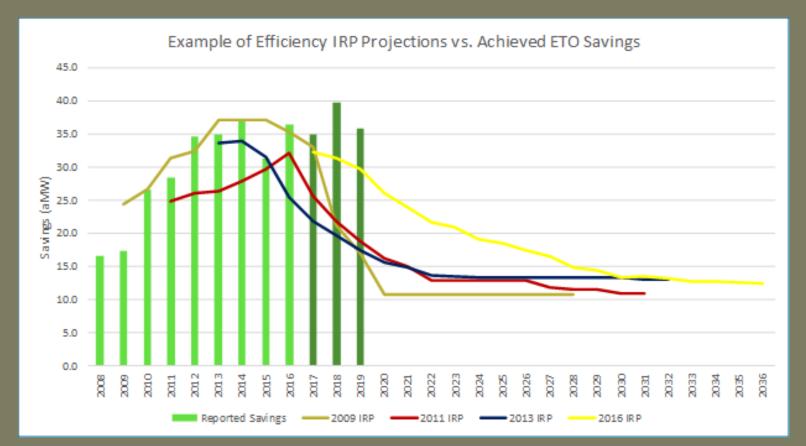
Comparison to 7th Power Plan

Figure 3. Comparison of Energy Trust and 7th Plan Economic Potential as a Percentage of Forecast Load

Energy Trust Compared to 7th Power Plan

Energy Trust has

- Higher measure saturations than the region as a whole
- Lower electric space & water heat saturation
- Fewer savings from codes and standards
- More savings in the near term, fewer in out years


Considerations for Adjustments to Energy Trust forecasting

Summary of Issues

- History of performance exceeding IRP targets
- The available resource is expected to decline over time
- Energy Trust needs to refine forecasts
- Energy Trust is seeking feedback on potential refinements

History of Achievements Exceeding IRP Targets

Think About Forecast in Three Time Periods

- 1-2 years (short term)
 - Programs know best
- 3-5 years (mid term)
 - Programs and planning work together
- 6-20 years (long term)
 - Planning forecasts long-term acquisition rate

Drivers of Short Term Forecast Uncertainty

- Large new facilities
- Difficult-to-predict factors
 - Economic conditions
 - Weather
- Uncertain utility load, population growth and building forecasts
- Difficult-to-predict pace of market uptake
- Timing for modeling IRP targets and annual goal setting do not align

Drivers of Mid/long Term Forecast Uncertainty

- Several of those in previous slide
- Practice of producing single line forecasts without error bands
- Unforeseeable new technologies and solutions

Future Savings Potential

- Significant cost-effective potential remains, however;
 - Codes and standards are improving
 - Deep penetration in some markets
 - Residential lighting
 - Water flow restriction devices
 - Indicators of past success
 - Energy Trust exited fridge retirement and other appliance markets
 - More small commercial and industrial projects
 - New construction is unpredictable

Incremental Improvements to Forecasting

- Create more nimble modeling structure (2015)
- Create risk factors for emerging technology (2015)
- Iterative updates to measures, baselines and emerging technology (2016, 2017, ongoing)
- Include additional behavioral savings and near net-zero homes and buildings (2017)

History of Purpose and Pace of Forecast

- Energy Trust has historically developed a single, "firm" estimate of conservation supply
 - Energy Trust has been achieving results that exceed the forecast of "firm" resource
 - Conservative view as a large % of what was acquired over 5 years was from "non-firm" or unknown resources 5 years previously

Alternative Forecasting Approaches

- Energy Trust acquire known resource more rapidly
- Energy Trust adopt other methods to forecast based on techniques such as:
 - Simplified statistical trending
 - Physical limits approach
- Assume every commercially available technology would eventually be implemented by everyone

Potential Adjustments to Consider - 1

- Should we add 5% to entire resource potential to address unpredicted loads?
- Should we include an incremental resource adder to account for unknown future technologies?
- Should forecasts be based on a range of potential?
- What other emerging tech should we include in the forecast?

Potential Adjustments to Consider - 2

- Should we forecast a more aggressive deployment rate?
- Should we plan a project to pursue a more speculative estimation of supply?
- Is there a role for trending beyond acknowledging trends exist?
- Does it make sense to forecast to acquire all potential in 5 or 10 years?

Thank You

Adam Shick Sr. Planning Project Manager adam.shick@energytrust.org 503.445.2953

Spencer Moersfelder Planning Manager spencer.moersfelder@energytrust.org 503.445.7635

