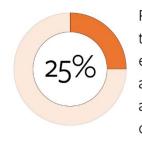
BRIC **Net Zero Emerging** Leaders Internship

3RIC

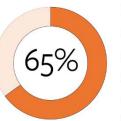
Creating Sustainable Buildings and a Sustainable Culture

BRIC Overview

BUILDING RELATIONSHIPS | INSPIRING COMMUNITIES

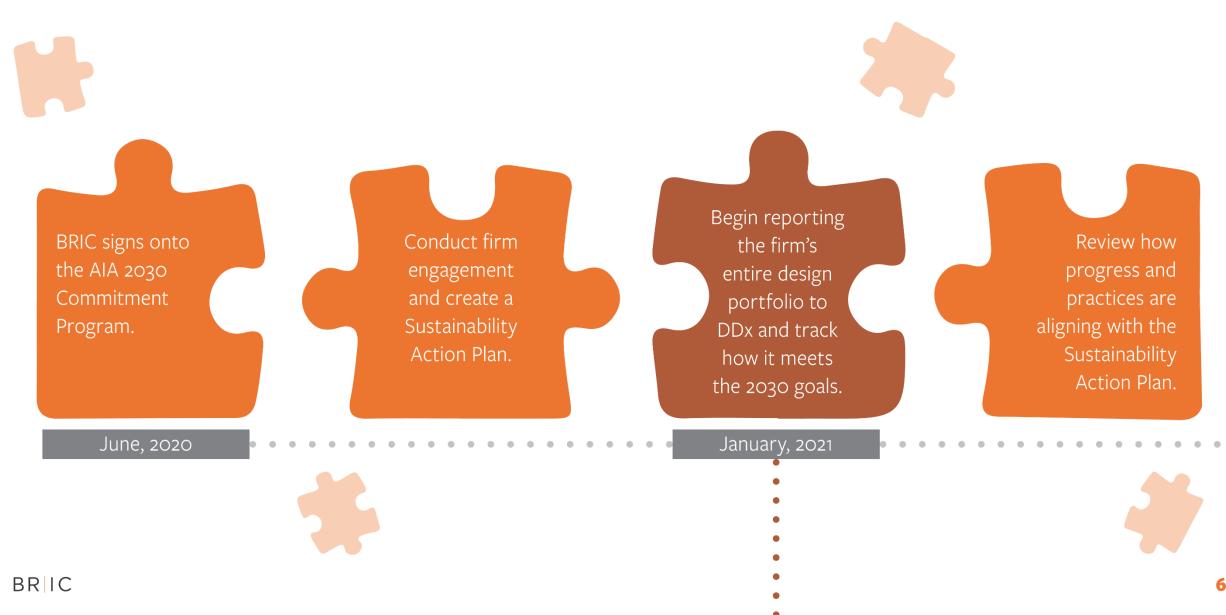

BRIC Architecture is a **community-focused** architecture firm. Through value-driven conversations, we collaborate with communities to create spaces that **inspire engagement**, **exploration, growth, and inclusivity for generations**. We believe the long-term stewardship of the natural environment - both locally and globally - is one of our inherent responsibility as designers. As we renovate and design new buildings, we are recognizing the steps needed to reach a **path to net zero** and look forward to accomplishing these goals.

BRIC and Sustainability


Sustainability and Schools

WHY GREEN SCHOOL DESIGN MATTERS

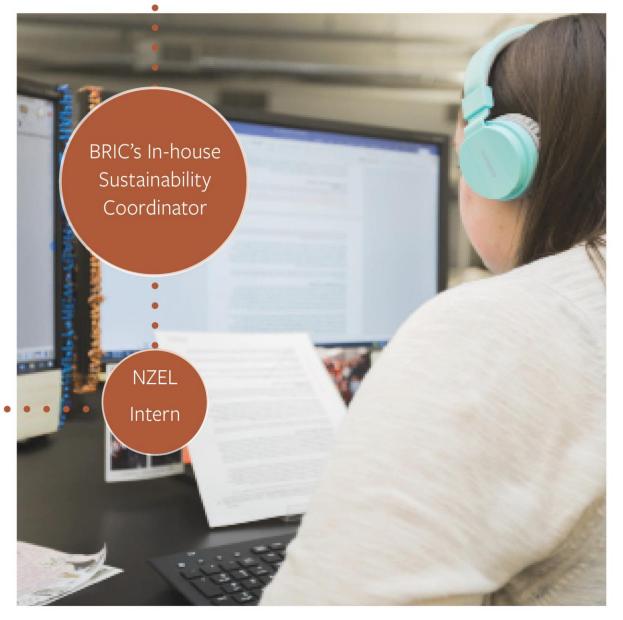
- Students and faculty spend **85%-90%** of their time indoors, where the indoor air quality can be up to 100 times more harmful than outdoors.
- Over **70%** of executives reported that green schools reduced student absenteeism and improved student performance.¹


Rate in which the classroom environment can affect a child's academic progress over a year.

Reduction in asthma cases among elementary school students when indoor environment quality improves.

BRIC's AIA 2030 Commitment

BRIC's AIA 2030 Commitment


Internship Goals

DDx and review information. results.

Log all applicable projects into



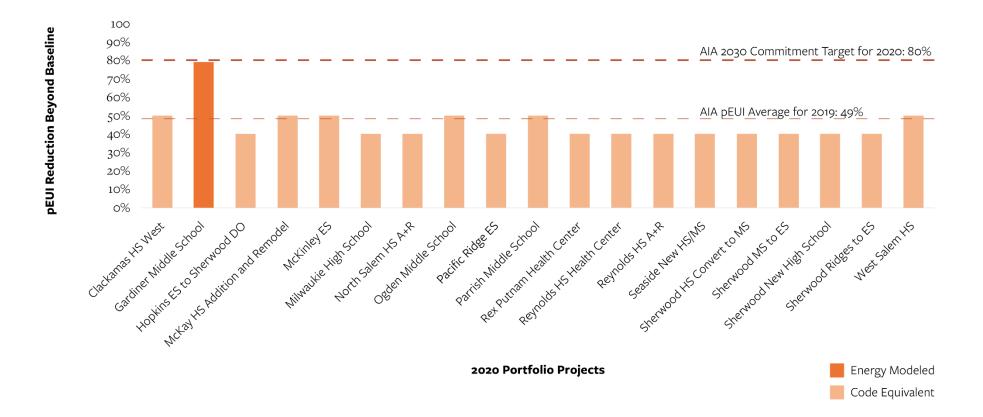
BRIC 2020 Portfolio

RECORDING PROCESS

- Generated a template that lists the required information from DDx for the firm to use.
- Attended AIA 2030 Open Office Hours to learn how to efficiently use this research tool.
- Recorded projects to DDx and updated whenever new information was provided.

BRIC 2020 Portfolio

PROJECT OVERVIEW


19 Projects Recorded

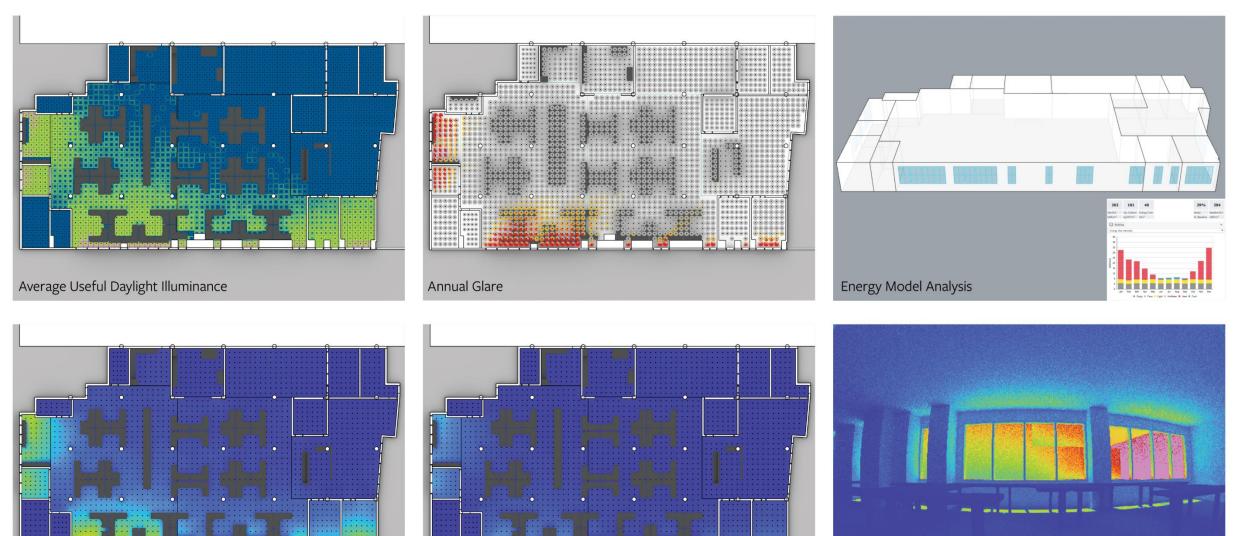
BRIC 2020 Portfolio

RESULTS

Case Study:

GARDINER MIDDLE SCHOOL

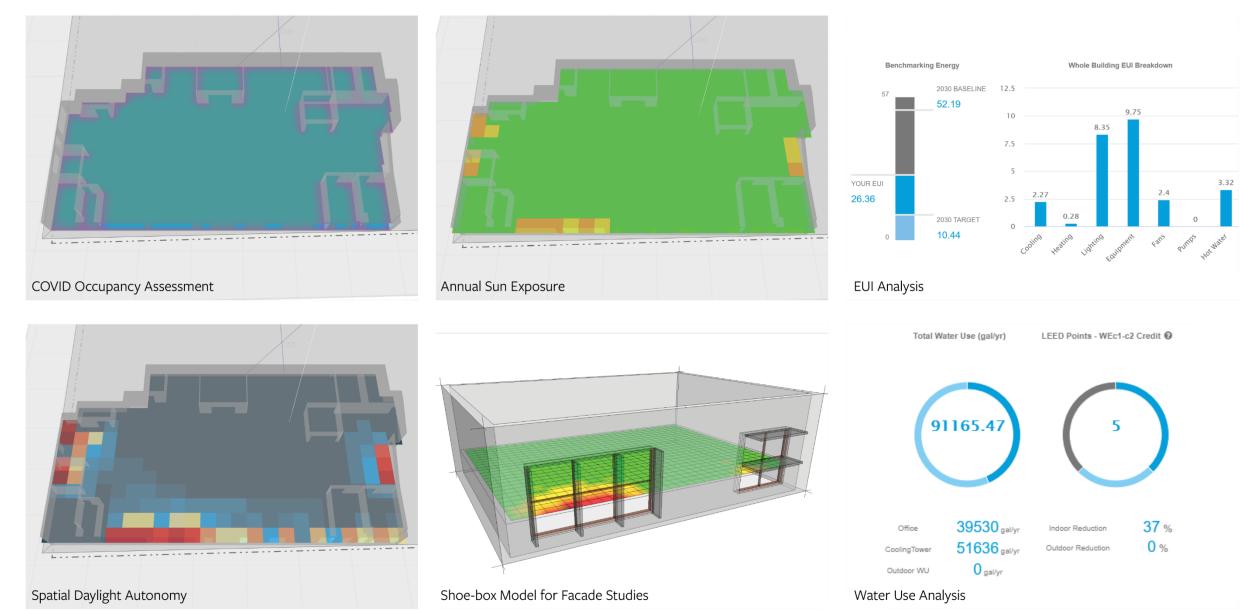
- Oregon City, Oregon
- Area: 150,000 ft²
- Path to net zero project
- Early discussion about EUI and energy modeling
- Focus on energy conservation: water, lighting, electrical, and HVAC
- Renewable energy: solar strategies
- 79% EUI Reduction

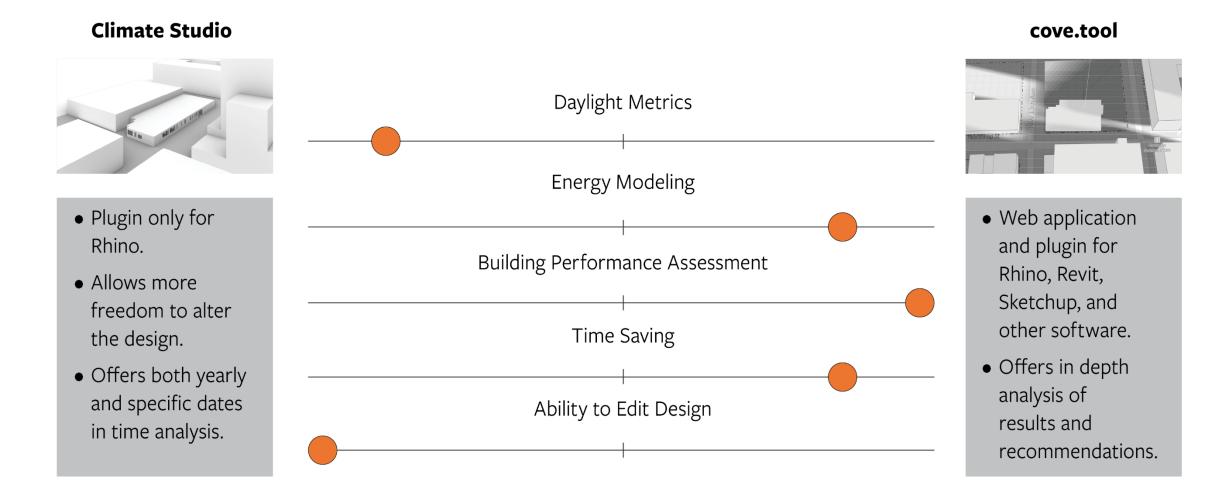


Performance Modeling Comparison

AN ANALYSIS OF THE BRIC OFFICE

PERFORMANCE MODELING - CLIMATE STUDIO


Point-in-Time Illuminance: Winter Solstice


BRIC

Point-in-Time Illuminance: Summer Solstice

Radiance Rendering

PERFORMANCE MODELING - COVE.TOOL

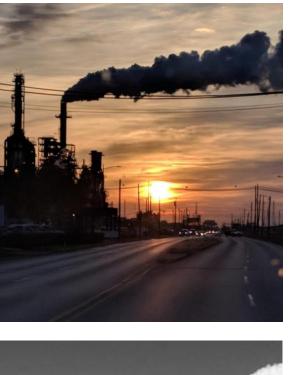
Next Steps

Standardize energy modeling and EUI tracking throughout the design process.

Develop a method to track renewable energy sources, predicted lighting power density, and embodied carbon.

Maintain progress to the 2030 Challenge.

Thank You


CARLETON HART ARCHITECTURE

NZEL PRESENTATION BY SUSANA CARRIZAL

SUSANA CARRIZAL

INTRODUCTION

- Background
 - o 3rd year PSU Architecture Student
- NET Zero Emerging Leaders
 Program
- My experience at Carleton Hart Architecture- 2021
 - \circ Online interning at CHA
 - \circ Discovery
 - \circ Learning
 - Problem Solving
 - Implementing

CARLETON HART ARCHITECTURE

INTRODUCTION

Founded in 1994 with a special focus on work that **supports community building.**

Specialize in affordable housing – serving vulnerable and marginalized communities, client – centric, mission driven.

B Corp – A third party certification of social and environmental performance of for-profit companies, that practice a high level of transparency and accountability.

Just - is a transparency platform for organizations to disclose their operations, including how they treat their employees and where they make financial and community investments.

Full-service architecture and interiors – with a special focus on materials health with and equitable design approach.

LEGEND

- GREEN COMMUNITIES
- EARTH ADVANTAGE

BRIDGE MEADOWS (GOLD) Portland, Oregon 48,612 SF 36 Units

		48,860 SF 40 Units	SI
Po 65,	LARA VISTA TOWNHOMES (SILVER) ortland, Oregon :352 SF: :Units IRIS GLEN Klamath Falls, Oregon 33,065 SF 37 Units	THE MAGNOLIA (SILVER) Portland, Oregon 46,382 SF 49 Units	GILMAN C Portland, C 55,800 SF 60 Units

2006 2008 2010 2012 2014 2016 2018 2020

HOOD RIVER CROSSING Hood River, Oregon

39,859 SF 40 Units

TIGARD KNOLL Tigard, Oregon 39,859 SF 40 Units

61,000 SF

84 Units

Portland, Oregon

CHAUCER COURT APTS (Rehabilitation Project) Portland, Oregon

Location: Beaverton, Oregon Size: 40,025 SF # Units: 47

LASCALA MIRACLES CLUB (GOLD) Location: Beaverton, Oregon Size: 47,015 SF # Units: 44

BARCELONA

GILMAN COURT (GOLD) ortland, Oregon 55,800 SF

ROSEWOOD PLAZA

Size: 54,710 SF

Location: Gresham, Oregon

SUSTAINABILITY AT

HILL PARK

30,209 SF

49,100 SF

41 Units

30.209 SF

40 Units

39 Units

WORK CERTIFICATION

Portland, Oregon

Beaverton, Oregon

Portland, Oregon

BRIDGE MEADOWS (PLATINUM)

NAYA GENERATIONS (GOLD)

NEW MEADOWS (GOLD) Portland, Oregon

14,533 SF

15 Units

COLONIA UNIDAD (GOLD) Woodburn, Oregon 120,623 SF 44 Units

NESIKA ILLAHEE (PLATINUM)

Portland, Oregon 51,605 SF 59 Units

64 Units

WOODY GUTHRIE PLACE (PLATINUM) Portland, Oregon 29,031 SF

48 Units

SUSTAINABILITY AT WORK CERTIFICATION

CEDAR GROVE (PLATINUM) Beaverton, Oregon 33,208 SF 44 Units

MAMOOK TOKATEE

Pursuing PLATINUM Portland, Oregon 54,182 SF 50 Units

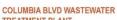
WEBSTER ROAD

Pursuing GOLD Gladstone, Oregon 95,830 SF 48 Units

SUSAN EMMONS

Pursuing GOLD Portland, Oregon 10,000 SF + 9,992 SF 98 + 48 Units

HAYU TILIXAM


Pursuing PLATINUM Portland, Oregon 54,182 SF 50 Units

THE JOYCE HOTEL

Pursuing SILVER Portland, Oregon 5.825 SF 66 Units

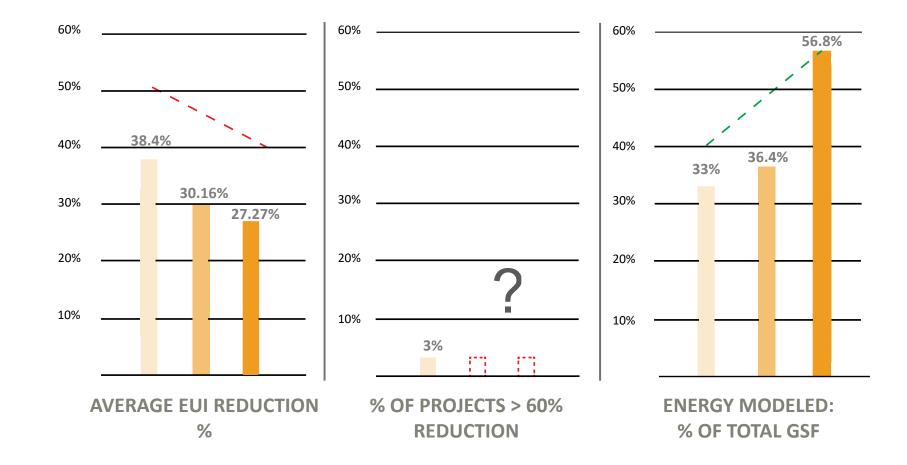
BEHAVIORAL HEALTH RESOURCE CENTER Pursuing GOLD

Portland, Oregon 12.005 SF

Pursuing GOLD

2030 CHALLENGE/ ALL PROJECTS

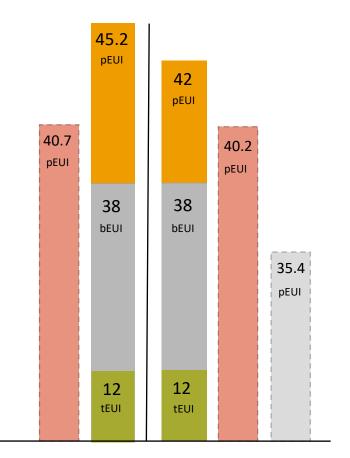
REPORTING YEAR 2020


LODGING RESIDENTIAL-MID-**RESIDENTIAL-MULTI-FAMILY** GENERAL/OTHER RISE/HIGH-RISE 70 67 42.3 40.7 38.6 <u>38.1</u> 35.4 30 -20 -10 -PROJECT 10 PROJECT 11 PROJECT 12 **PROJECT 13A** PROJECT 13B PROJECT 15 PROJECT 16 PROJECT 17 PROJECT 1 PROJECT 2 PROJECT 3 PROJECT 4 PROJECT 5 PROJECT 6 PROJECT 7 **PROJECT 8** PROJECT 14 PROJECT 9

> TARGET EUI pEUI

ARE WE GETTING BETTER OR WORSE?

2018-2020 DATA


CASE STUDY

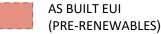
PROJECT A

4 STORY MULTI-FAMILY

39,430 SQFT NUMBER OF UNITS: 44 CONSTRUCTION TYPE: V-A EARTH ADVANTAGE PLATINUM

PROJECT B

4 STORY MULTI-FAMILY


38,333 SQFT NUMBER OF UNITS: 48 CONSTRUCTION TYPE: V-A EARTH ADVANTAGE PLATINUM

BASELINE

PREDICTED EUI

LES) AS BU

AS BUILT EUI (POST-RENEWABLES)

CASE STUDY

PROJECT A

Exterior Walls:

R-23, blown-in batt (5 1/2 inches stud bays). R-6, continuous rock wool exterior insulation.

Below Grade Wall:

1. R-10, extruded polystyrene foam board for full height on interior face of wall.

2. R-15, blown-in-batt (3 ½ inches stud bays)

Roof: R-30 (Rigid Insulation)

Windows: Innotech Windows + Doors; Defender 76 DS.

PROJECT B

Exterior Walls:

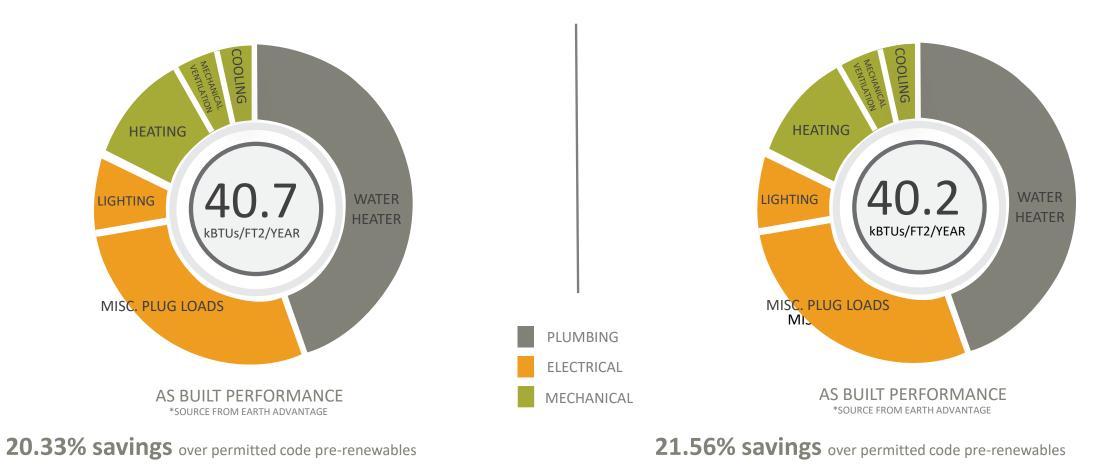
R-6, exterior continuous mineral wool insulationR-23, blown-in blanket (5 1/2 inches stud bays).

Wood Floors: Overhangs

1. R-38 minimum, Blownin Batt

Below Grade Wall:

1. R-10, extruded polystyrene foam board for full height on interior face of wall.

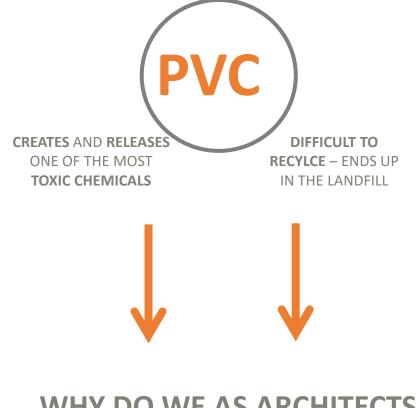

2. R-15, blown-in-batt (3 ½ inches stud bays)

Roof: R-30 (Rigid Insulation)

Windows: Innotech Windows + Doors; Defender 76 TS.

PROJECT A

PROJECT B



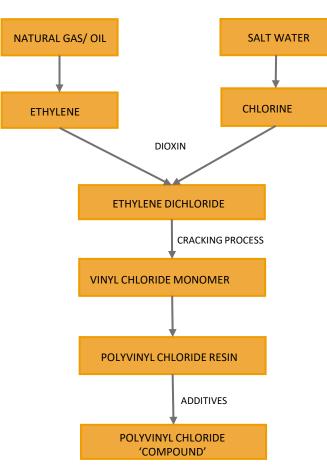
WATER HEATING (PLUMBING)/MISC PLUG LOAD (ELECTRICAL)/ HEATING (MECHANICAL) **HAVE THE MOST IMPACT** ON A BUILDING'S ENERGY PERFORMANCE RESEARCH

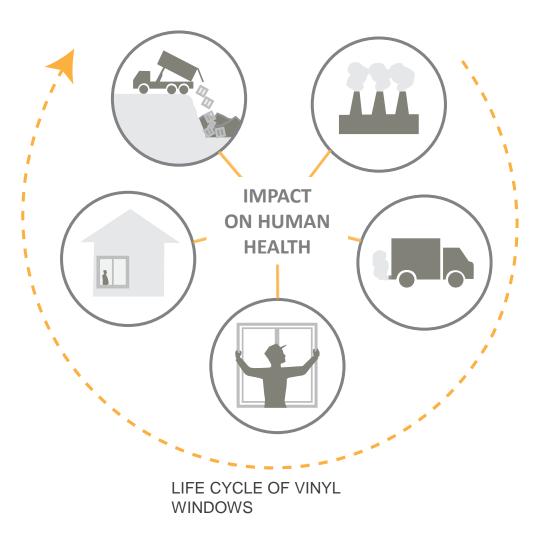
ALTERNATIVES TO VINYL WINDOWS

WHY IS IT IMPORTANT?

RESEARCH

WHY DO WE AS ARCHITECTS NEED TO CARE ABOUT THIS?




https://earthjustice.org/teatures/toxic-catastrophes-texas-national-chemical-disaster-rule

CHEMICALS IMPACTING HUMAN HEALTH

RESEARCH

CHEMICAL PROCESS:

WHAT ARE YOUR CHOICES?

RESEARCH

VINYL

ALUMINUM

FIBERGLASS

WOOD W/ ALUMINUM CLAD

WHAT ARE YOUR CHOICES?

RESEARCH

VINYL

ALUMINUM

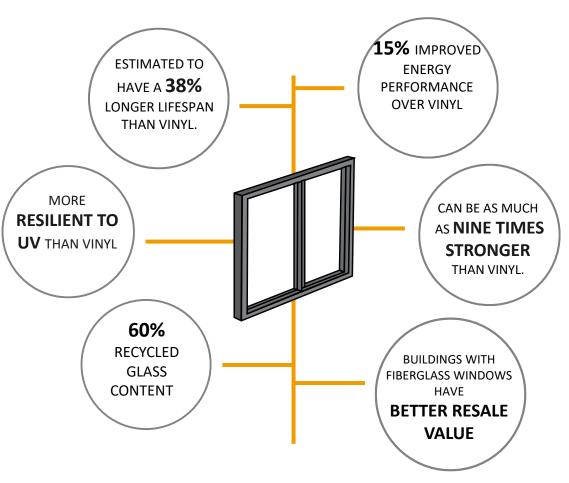
FIBERGLASS

WOOD W/ ALUMINUM CLAD

VINYL WINDOWS VS FIBERGLASS

RESEARCH

SAMPLE PROJECT


TOTAL NUMBER OF VINYL WINDOWS : 167

ESTIMATED COST OF VINYL WINDOWS: \$91,850

ESTIMATED COST FOR FIBERGLASS WINDOWS: **\$133,600**

APROX. 40% PRICE INCREASE

BENEFITS OF FIBERGLASS

WINDOW CHART

RESEARCH

	HARM LVL	PERFORMANCE			OTHER		
TYPE	EMBODIED CARBON	U- VALUE	DURABILITY & ROT	MAINTENANCE	STRENGTH	CUSTOMIZATION OPTION	COST
VINYL		0.6 – 0.5	**	**	*	*	\$
ALUMINUM		1.0 – 2.2	***	***	**	***	\$\$\$
FIBERGLASS		0.4 – 0.6	***	***	***	***	\$\$\$
WOOD W/ ALUMINUM CLAD		0.9 - 1.25	**	**	**	*	\$\$\$\$

SOURCES

HTTPS://WWW-BUILDINGGREEN-COM.PROXY.LIB.PDX.EDU/FEATURE/CHOOSING-WINDOWS-LOOKING-THROUGH-OPTIONS HTTPS://WWW.CASCADIAWINDOWS.COM/DATABASE/FILES/LIBRARY/CASCADIA WHITE PAPER WHY FIBERGLASS 2020 04(2).PDF HTTPS://EARTHJUSTICE.ORG/FEATURES/TOXIC-CATASTROPHES-TEXAS-NATIONAL-CHEMICAL-DISASTER-RULE HTTPS://WWW.ECOHOME.NET/GUIDES/2357/WINDOWS-DOORS/ HTTPS://WWW.ECOWATCH.COM/WHY-YOU-SHOULD-AVOID-PVC-PRODUCTS-1881927242.HTML HTTP://WWW.HUMMELCROTON.COM/MSDS/PVC.PDF HTTPS://WWW.RESEARCHGATE.NET/PUBLICATION/228954617_SUSTAINABILITY_ANALYSIS_OF_WINDOW_FRAMES HTTPS://WWW.SCIENCEDIRECT.COM/SCIENCE/ARTICLE/PII/B9780857097675500212 HTTPS://WWW.GREENPEACE.ORG/USA/WP-CONTENT/UPLOADS/LEGACY/GLOBAL/USA/REPORT/2009/4/PVC-THE-POISON-PLASTIC.HTML

HTTPS://WWW.WEATHERSHIELD.COM/NEWS/WS-BLOG/WEATHER-SHIELD-BLOG/JANUARY-2014/ALUMINUM-VS-FIBERGLASS-WINDOWS

BROECKX-SMITH, S., SUH, S. (2019). COMPARATIVE LIFE CYCLE ENERGY AND GREENHOUSE GAS EMISSION PERFORMANCE OF WINDOW FRAME MATERIALS. GOLETA, CA, USA: VITALMETRICS (IERS LLC.).

SALAZAR, J. "21 - LIFE CYCLE ASSESSMENT (LCA) OF WINDOWS AND WINDOW MATERIALS." ECO-EFFICIENT CONSTRUCTION AND BUILDING MATERIALS, ELSEVIER LTD, 2014, PP. 502–527.

GREEN BUILDINGS AND THE LAW, EDITED BY JULIE ADSHEAD, CRC PRESS LLC, 2011. *PROQUEST EBOOK CENTRAL*, <u>HTTPS://EBOOKCENTRAL-PROQUEST-</u>COM.PROXY.LIB.PDX.EDU/LIB/PSU/DETAIL.ACTION?DOCID=684046.

THANK YOU.

Collect, Synthesize, Inform Leveraging Data to Achieve Net Zero Goals

NET ZERO EMERGING Leader internship

GBD ARCHITECTS | ENERGY TRUST OF OREGON 2021

GBD

GBD NZEL INTERN LINEAGE

2020

- DRAFT INTERNAL STANDARDS OF SUSTAINABLE Data collection
- CREATE INTERNAL 2019 PROJECT SUSTAINABILITY Catalogue

-REPORT 2019 PROJECT DATA TO DDX

2021

A

S

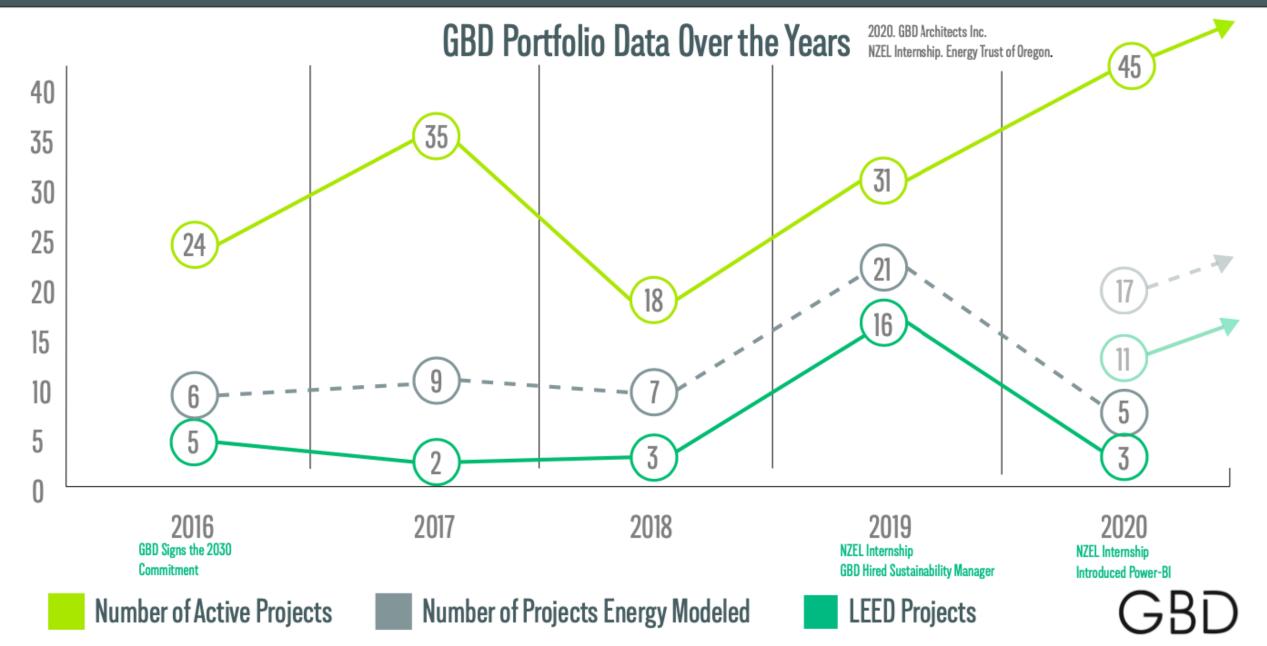
N

M

-MERGE PROJECT CATALOGUE WITH POWER-BI Interface/ generate GBD Project Dashboards

-REPORT 2020 PROJECT DATA TO DDX

2022 -EXTEND GBD PROJECT DATA WITHIN POWER-BI J -DRAFT PROJECT DATA SUBMISSION PORTAL -IMPLEMENT PROJECT DASHBOARDS INTO GBD DESIGN WORKFLOW 9 -UTILIZE ARCHITECT / DESIGNER INPUT TO FINE-TUNE INTERNAL DASHBOARDS


> -LEVERAGE PROJECT DASHBOARDS TO MEET AIA 2030 Goals

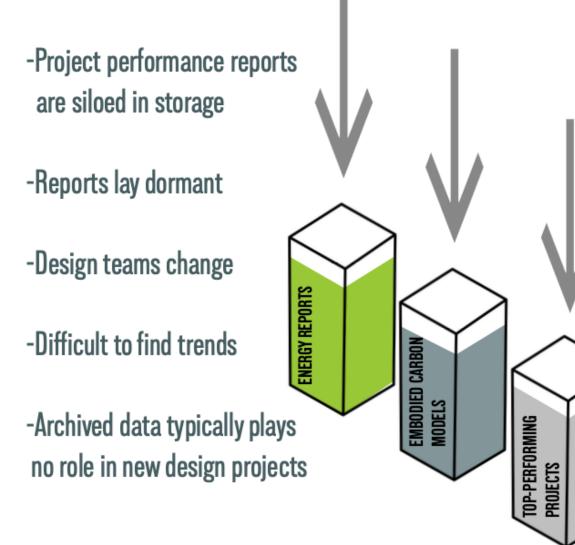
47.4% Average predicted EUI reduction for 2019

44.8% Average predicted EUI reduction for 2020

GBD

INTERPRETING ANNUAL DATA

WHAT DOES THE DATA TELL US?


Predicted EUI Reduction x GBD 2020 Portfolio

2030 Challenge Threshold for 2030 100 % Next Target 2030 Challenge Threshold for 2025 90 % = 2030 Challenge Threshold for 2020 80 % 2030 Challenge Threshold for 2015 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 70 % Reduction 60 % AIA pEUI Reduction for 2019 at 49% **50** % GBD pEUI Reduction for 2020 at 44.8% 40 % pEUI **30** % Residential Mid/High Rise ulti-Family > 5 Units Food Sales - General 20 % Office - Medium lotel / Motel Office - Large Office - Small 10 % lixed-Use Education 0% 2020 Portfolio 2021 GBD Architects Inc.

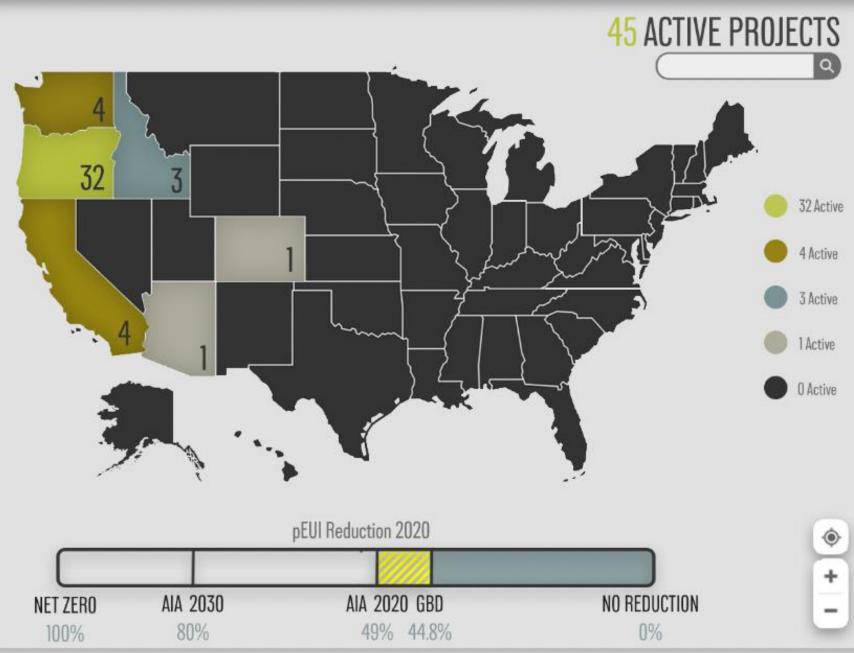
NZEL Internship Energy Trust of Oregon

HOW CAN WE MAXIMIZE OUR CURRENT DATA?

THE CURRENT PROBLEM...

OUR NEEDS...

- -Generate project performance dashboards
- -Cross-reference past project performance
- -Pattern recognition of trends through graphics
- -Streamline Communication
- -Keep a current designer driven project database


HOW CAN WE MAXIMIZE OUR CURRENT DATA?

THE SOLUTION... Merging current project data with Power-BI Platform

- Live project dashboards with sustainability measures and modeling results streamline team communication
- Dashboards will facilitate "What if..." scenarios for project teams
- Linking energy conservation with costing models
- Data is translated into customizable info-graphics highlighting trends
- Used as internal platform to make informed design decisions
- Internal tracking of GBD's progress towards 2030 commitment

GBD_{ARCHITECTS INC.}

	GBD TOP-PERFORMERS	ġ.
PROJECT A		pEUI - <mark>0.03</mark>
PROJECT B		pEUI <mark>0.00</mark>
PROJECT C		pEUI <mark>22.80</mark>
PROJECT D		pEUI <mark>29.25</mark>
GBD Ave	rage pEUI 41.64	

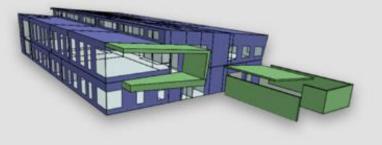
pEUI % Reduction 44.8%

All

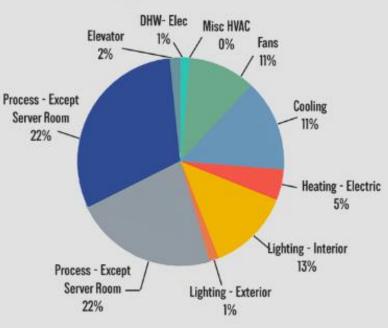
GBD_{ARCHITECTS INC.}

V

All



- rojects Modeled <mark>5</mark>
- otal GSF Modeled 559,810
- ffice (Large & Medium) Average pEUI 25.04


PROJECT RESULTS	\square	٩
PROJECT G	32,000 SQFT	pEUI 0.03
PROJECT K	35,000 SQFT	pEUI 22.8
PROJECT N	32,080 SQFT	pEUI 29.25
PROJECT O	306,079 SQFT	pEUI 30.0
PROJECT S	154,651 SQFT	pEUI 43.19
pEUI <mark>25.04</mark>	100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%	duction AIA 2019 AVG REDUCTION

GBD_{ARCHITECTS INC.}

Energy Use Breakdown

GSF 33,770 Office (Medium) CD Phase Zone 4C 0.64 LPD 32% Window/Wall

140,000

120,000

100.000

80.000

60,000

40,000

20,000

0

ASHRAE 90.1-2016 Appendix

6 Baseline

CARBON EMISSION (KgCo2e)

Natural Gas

Electricity

Proposed with PV

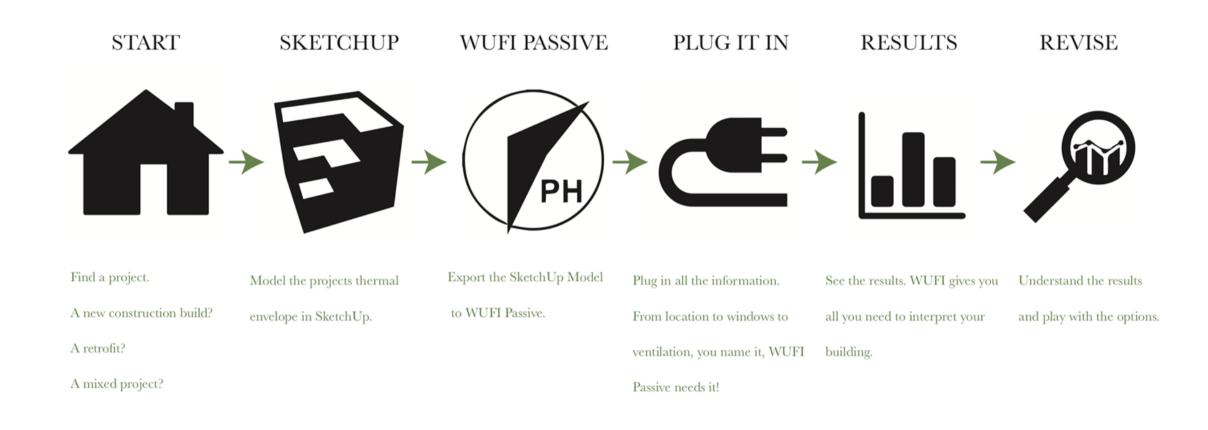
ANNUAL GREENHOUSE GAS EMISSIONS

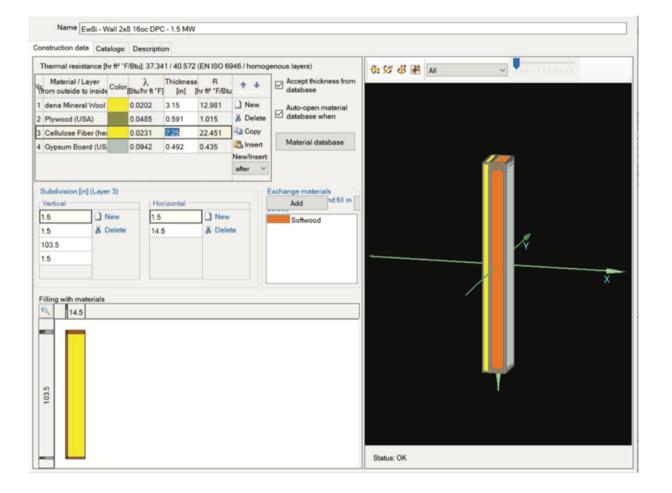
Proposed

All

Energy Trust of Oregon NET ZERO EMERGING LEADERS INTERNSHIP

Green Hammer | Emily Nelson




The Internship Agenda and Goals

- Expand Upon Integrating Energy Modeling into the Workflow
- Simplify the Energy Modeling Process
- Create User-Friendly Guidelines
- Create Easy-to-Use Comprehensive Databases
- Encourage Use of the Systems and Softwares
- Share Gained Knowledge
- Understand the Results

The WUFI Passive Way

The Assembly Database

Creating a custom database that works for all of Green Hammers' needs:

- Walls
 - Including Green Hammer standards and existing finds
 - Various sizes, insulation types, barrier options, exc.
- Floors
 - Including slab on grade, suspended, basement, exc.
 - Various insulation types, thicknesses, and finishes.
- Roofs
 - Including sloped, flat, ventilated, non ventilated, exc.
 - Various insulation types, structures, barrier options, exc.

The Window Database

Name Unilux - Aluminum Clad Viny	I - Passive Hou	se - R 8 - Trip	le P - Fixed		
indow data Catalogs: Description					
Uw/Frame factor detailed calculation (obligatory for p	assive house	verification)		
Parameters			SHGC d	letailed	
Uw -mounted [Btu/hr ft ² *F]		0.13	Incide	SHGG	
Frame factor [-]		0.7527	angle [°]	[-]	
Glass U-value [Btu/hr ft² *F]		0.09	0	0	New New
Solar energy transmittance hemispherical	[-]	0.4			🕺 Delete
SHGC/Solar energy transmittance (perper	ndicular) [-]	0.4			Сору
Long wave radiation emissivity (mean gla	zing/frame) [-]	0.8			📇 Insert
					New/Insert
					after 🗸
Frame parameters (optional for WUFIplus	s, required for p	passive house	verification)		
Setting	Left	Right	Тор	Bottom	Shown Uw factor is related to
Frame width [in]	3.5	3.5	3.5	3.5	standard window
Frame U-value [Btu/hr ft² *F]	0.14	0.14	0.14	0.14	geometry. It will be calculated with
Glazing-to-frame psi-value [Btu/hr ft "F]	0.012	0.012	0.012	0.012	component dimensions.
Frame-to-Wall psi-value [Btu/hr ft *F]	0.02	0.02	0.02	0.02	Contraction of the local data
					>

Creating a custom database that works for all of Green Hammers' needs:

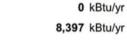
- Commonly Found Windows
- Different Manufacturers
- Various Materials
- Various R Values
- Various SHGC
- Exc.

Window Data: Fixed to Operable

Zola - uVPC - Thermo - Triple Pane

Fixed: R - 7	
0.15	
0.7553	
0.09	
0.37	
0.37	
0.8	
3.46	
0.144	
0.040	
0.02	

Uw-Mounted	0.17
Frame Factor	0.7553
Glass U-Value	0.09
Solar Energy Transmittance Hemispherical	0.31
SHGC (Perpendicular)	0.31
Long Wave Radiation Emissivity	0.8
Frame Width	3.46
Frame U-Value	0.144
Glazing-to-Frame Psi-Value	0.060
Frame-to-Wall Psi-Value	0.02

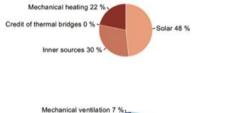

Fixed to Operable in Action

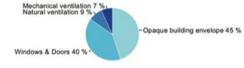
Fixed: R - 7	
Heating Demand	5.22
Cooling Demand	4.55
Heating Load	3.41
Cooling Load	3.01
Source Energy	9,184
Site Energy	13.9

HEAT FLOW - HEATING PERIOD

Heat gains

Solar:
Inner sources:
Credit of thermal bridges:
Mechanical heating:



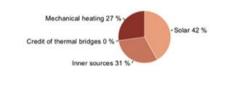

12,746 kBtu/yr

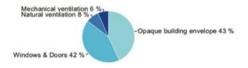
7,963 kBtu/yr

Heat losses

Opaque building envelope:	12,386	kBtu/yr
Windows & Doors:	10,951	kBtu/yr
Natural ventilation:	2,343	kBtu/yr
Mechanical ventilation:	1,855	kBtu/yr

Operable: R - 6 Heating Demand 6.39 **Cooling Demand** 3.27 Heating Load 3.77 Cooling Load 2.53 Source Energy 9089 Site Energy 13.76


HEAT FLOW - HEATING PERIOD


Heat gains

Solar:	11,588	kBtu/yr
Inner sources:	8,505	kBtu/yr
Credit of thermal bridges:	0	kBtu/yr
Mechanical heating:	10,285	kBtu/yr

Heat losses

Opaque building envelope:	12,442 kBtu/yr
Windows & Doors:	12,181 kBtu/yr
Natural ventilation:	2,338 kBtu/yr
Mechanical ventilation:	1,851 kBtu/yr

Window Data: Double to Triple

Double Pane Zola - uVPC - Classic Clad

Triple Pane Zola - uVPC - Thermo Clad

Uw-Mounted	0.25
Frame Factor	0.7553
Glass U-Value	0.09
Solar Energy Transmittance Hemispherical	0.44
SHGC (Perpendicular)	0.44
Long Wave Radiation Emissivity	0.8
Frame Width	3.46
Frame U-Value	0.60
Glazing-to-Frame Psi-Value	0.023
Frame-to-Wall Psi-Value	0.02

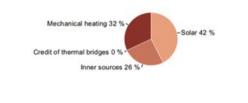
Fixed: R - 7		
Uw-Mounted	0.15	
Frame Factor	0.7553	
Glass U-Value	0.09	
Solar Energy Transmittance Hemispherical	0.41	
SHGC (Perpendicular)	0.41	
Long Wave Radiation Emissivity	0.8	
Frame Width	3.46	
Frame U-Value	0.25	
Glazing-to-Frame Psi-Value	0.007	
Frame-to-Wall Psi-Value	0.02	

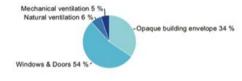
Uw-Mounted	0.26
Frame Factor	0.7553
Glass U-Value	0.09
Solar Energy Transmittance Hemispherical	0.37
SHGC (Perpendicular)	0.37
Long Wave Radiation Emissivity	0.8
Frame Width	3.46
Frame U-Value	0.64
Glazing-to-Frame Psi-Value	0.023
Frame-to-Wall Psi-Value	0.02

Uw-Mounted	0.17
Frame Factor	0.7553
Glass U-Value	0.09
Solar Energy Transmittance Hemispherical	0.34
SHGC (Perpendicular)	0.34
Long Wave Radiation Emissivity	0.8
Frame Width	3.46
Frame U-Value	0.32
Glazing-to-Frame Psi-Value	0.007
Frame-to-Wall Psi-Value	0.02

Double to Triple in Action

Double Pane		
Heating Demand	9.06	
Cooling Demand	3.98	
Heating Load	4.71	
Cooling Load	2.98	
Source Energy	9,699	
Site Energy	14.68	

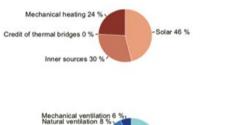

HEAT FLOW - HEATING PERIOD

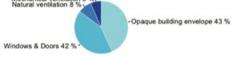

Heat gains

Solar:	14,230	kBtu/yr
Inner sources:	8,548	kBtu/yr
Credit of thermal bridges:	0	kBtu/yr
Mechanical heating:	14,580	kBtu/yr

Heat losses

Opaque building envelope:	12,351	kBtu/yr
Windows & Doors:	19,314	kBtu/yr
Natural ventilation:	2,313	kBtu/yr
Mechanical ventilation:	1,831	kBtu/yr


Triple Pane		
Heating Demand	5.85	
Cooling Demand	4.17	
Heating Load	3.63	
Cooling Load	2.9	
Source Energy	9,205	
Site Energy	13.93	


HEAT FLOW - HEATING PERIOD

Heat gains		
Solar:	12,587	kBtu/yr
Inner sources:	8,143	kBtu/yr
Credit of thermal bridges:	0	kBtu/yr
Mechanical heating:	9,418	kBtu/yr

Heat losses

Opaque building envelope:	12,367	kBtu/yr
Windows & Doors:	12,024	kBtu/yr
Natural ventilation:	2,338	kBtu/yr
Mechanical ventilation:	1,851	kBtu/yr

Window Data: Unilux: Wood to EcoWindows: Vinyl

Unilux

Unilux - Wood - Meister - Triple Pane

Window Data	Fixed: R - 6.5	Operable: R - 6
Uw-Mounted	0.16	.17
Frame Factor	0.8544	.8544
Glass U-Value	0.09	.09
Solar Energy Transmittance Hemispherical	0.44	.44
SHGC (Perpendicular)	0.44	.44
Long Wave Radiation Emissivity	0.8	.8
Frame Width	2	2
Frame U-Value	0.4	.43
Glazing-to-Frame Psi-Value	0.0082	.0098
Frame-to-Wall Psi-Value	0.02	.02

EcoWindows

EcoWindows - Vinyl - Iglo Energy Classic - Triple Pane

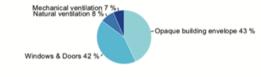
Window Data	Fixed: R - 6.5	Operable: R - 6
Uw-Mounted	0.16	0.17
Frame Factor	0.7692	0.7692
Glass U-Value	0.09	0.09
Solar Energy Transmittance Hemispherical	0.17	0.21
SHGC (Perpendicular)	0.17	0.21
Long Wave Radiation Emissivity	0.8	0.8
Frame Width	3.25	3.25
Frame U-Value	0.23	0.245
Glazing-to-Frame Psi-Value	0.025	0.035
Frame-to-Wall Psi-Value	0.02	0.02

Wood to Vinyl in Action

Wood	
Heating Demand	4.41
Cooling Demand	7.64
Heating Load	3.32
Cooling Load	4.12
Source Energy	9,751
Site Energy	14.76

HEAT FLOW - HEATING PERIOD


Heat gains

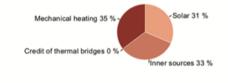

Solar:	,
Inner sources:	
Credit of thermal bridges:	
Mechanical heating:	

Heat losses

Opaque building envelope:	11,334 kBtu/yr
Windows & Doors:	11,102 kBtu/yr
Natural ventilation:	2,174 kBtu/yr
Mechanical ventilation:	1,721 kBtu/yr

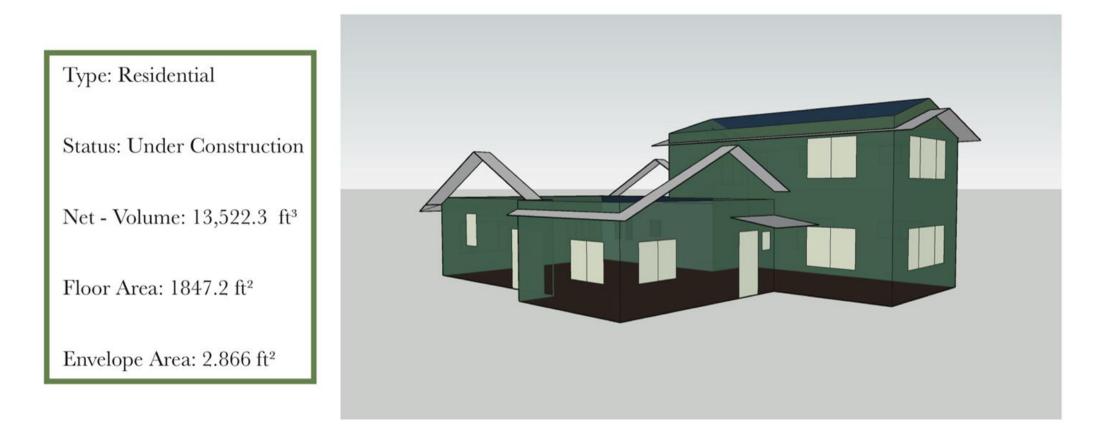
Vinyl				
Heating Demand	7.68			
Cooling Demand	1.65			
Heating Load	4.06			
Cooling Load	1.72			
Source Energy	8,931			
Site Energy	13.52			

HEAT FLOW - HEATING PERIOD

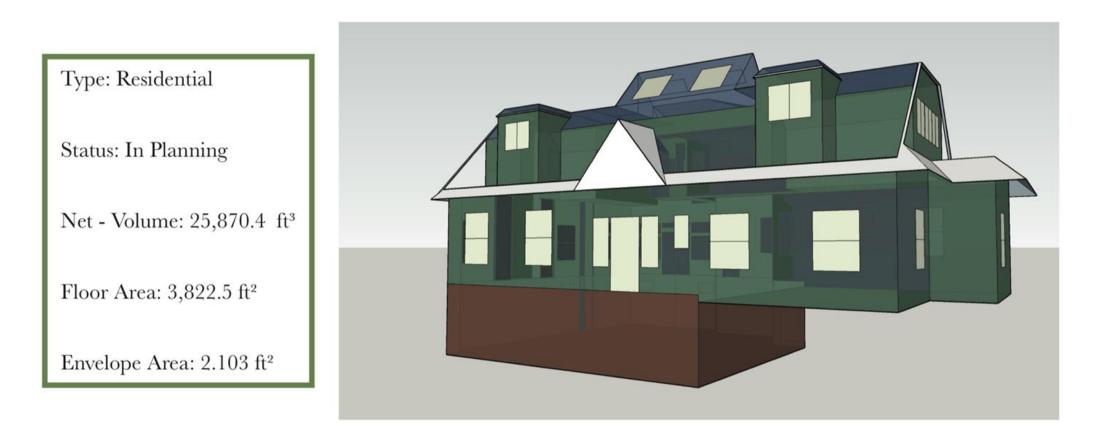

Heat gains Solar: Inner sources: Credit of thermal bridges:


Mechanical heating:

8,802	kBtu/yr
9,279	kBtu/yr
0	kBtu/yr
12,369	kBtu/yr


Heat losses

Opaque building envelope:	12,441 kBtu/yr
Windows & Doors:	12,255 kBtu/yr
Natural ventilation:	2,337 kBtu/yr
Mechanical ventilation:	1,851 kBtu/yr



A Retrofit: After the Remodel

Data Type	Original Data	Updated Windows	Updated Walls	Updated Roof	Windows, Walls, & Roof	Windows, Walls, Roof, & Systems
Heating Demand	33.86	20.87	31.41	32.92	17.63	9.76
Cooling Demand	0.69	1.49	0.66	0.66	1.51	2.15
Heating Load	15.09	11.77	14.43	14.85	10.88	4.66
Cooling Load	0.85	1.77	0.88	0.83	1.77	1.99
Source Energy	12,288	10,243	11,171	12,124	9,702	7,311
Site Energy	54.19	40.44	51.51	53.15	36.93	19.29

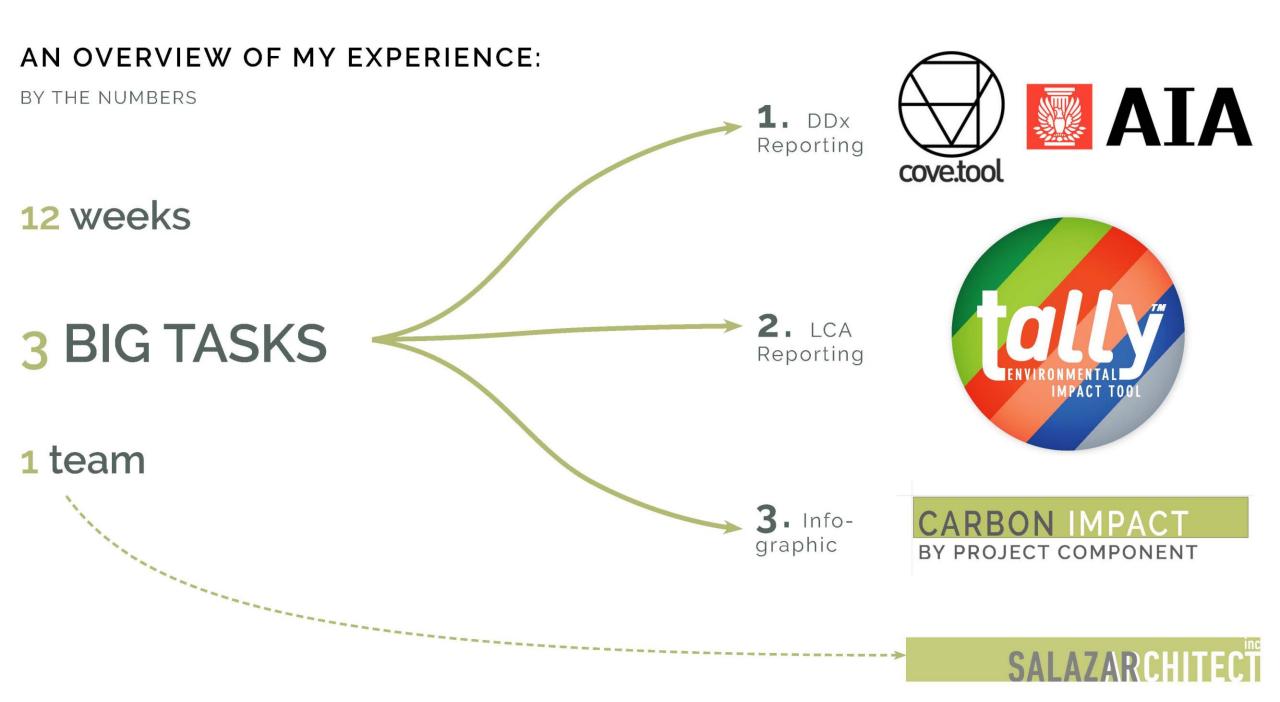
A Retrofit: Before the Remodel

The Results

Data Type	Original Data	Updated Windows	Updated Walls	Updated Roof	Windows, Walls, & Roof	Windows, Walls, Roof, & Systems
Heating Demand	74.59	66.52	58.29	58.46	34.28	17.9
Cooling Demand	1.02	0.85	0.72	0.63	0.27	2.35
Heating Load	27.57	25.37	23.22	23.32	16.76	5.76
Cooling Load	0	0	0	0	0	0.27
Source Energy	60,130	55,006	49,778	49,887	34,527	18,634
Site Energy	87.09	78.77	70.29	70.46	45.54	11.88

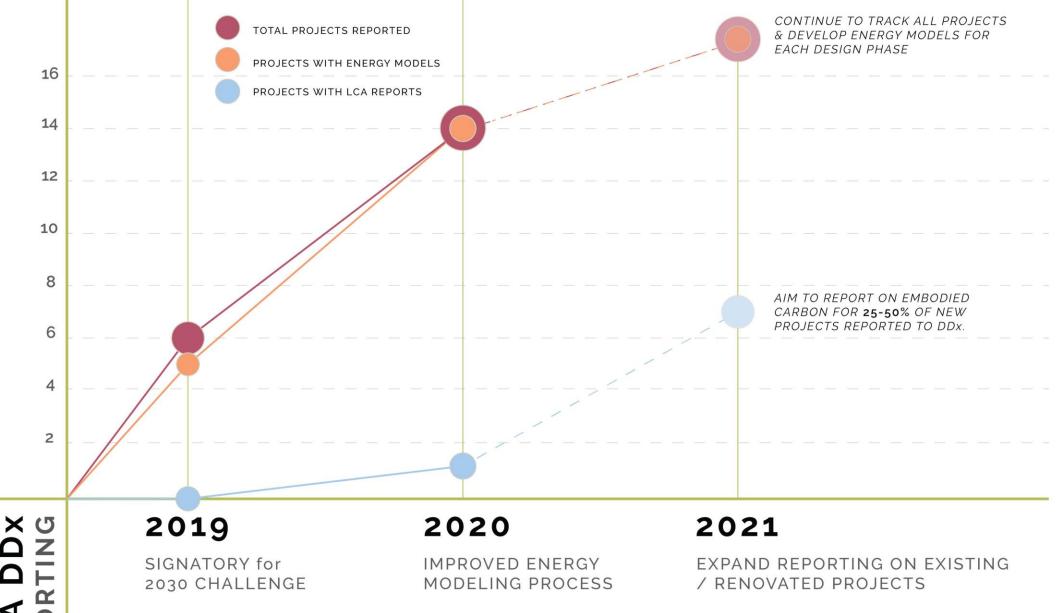
Understanding the Results

- Explore Energy Modeling as a Team
- Utilize the Tools Available
- Share Gained Knowledge
- Continue to Revise


Thank You!

EXPANDING THE SCOPE OF CARBON ACCOUNTING FOR PROJECTS

Energy Trust of Oregon Net Zero Emerging Leaders Internship


Courtney Sigloh

1. DDx Reporting & Cove.Tool Energy Modeling

CONTINUE TO GROW ENERGY MODELING & CARBON ACCOUNTING PROCESS

SALAZARCHI

FIRST REPORTING YEAR

1st EMBODIED CARBON PROJECT REPORT

A FOCUSED APPROACH

TRACKING & REPORTING 4 PROJECTS

Goldcrest Apartments	Williams Plaza Apartments	Aldercrest Apartments	Maple Lane Apartments
»New Construction	»Renovation of Existing 1972 Building	»Renovation of Existing 1970 Buildings	»New Construction
»82,000 sqft / 75 Units » Embodied Carbon WBLCA	»Redesigned Site & Interiors	»New Community Building & Landscaping	»Net Zero Ready »Using Cove.Tool for Comparisons & Optimization
	»Tracking Reduction in EUI & Reporting for Renos	»Community Building Design Strategies (Passive Design)	

2. Investigating Embodied Carbon: Research, Tools, Process

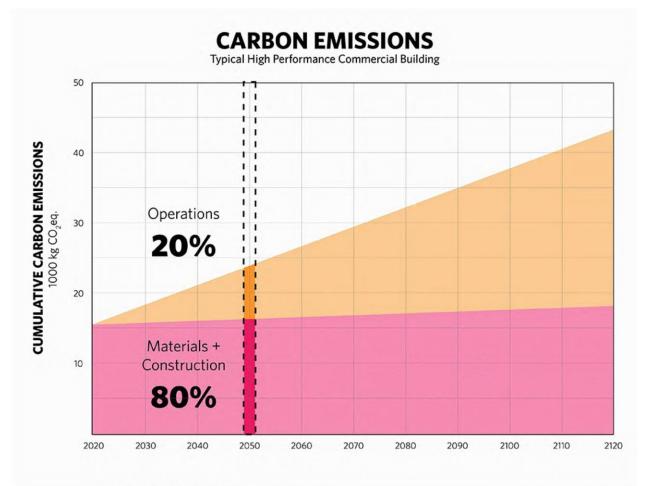
EMBODIED CARBON ACCOUNTING:

WHAT IS IT?

EMBODIED CARBON IS THE TOTAL CARBON EMISSIONS FROM BUILDINGS' PRODUCTS - THEIR TRANSPORT, MAINTENANCE, & END OF LIFE.

> EMBODIED CARBON IS THE FIRST STEP IN REDUCING A BUILDING'S CARBON FOOTPRINT

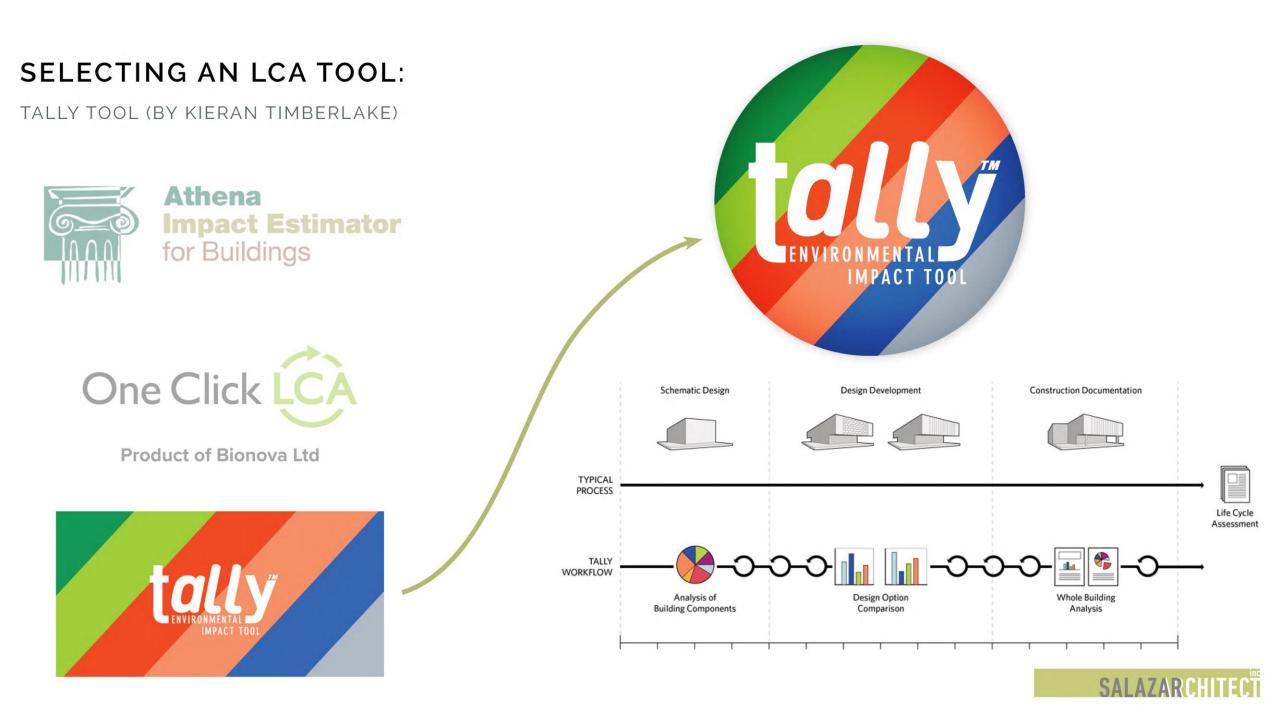
Types of Carbon in Buildings


Embodied Carbon The emissions from manufacturing, transportation, and installation of building materials.

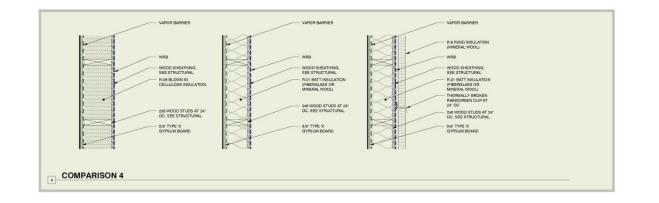
Operational Carbon The emissions from a building's energy consumption.

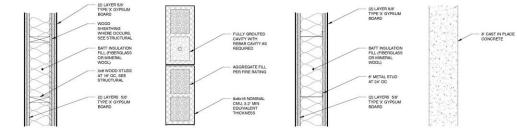
EMBODIED CARBON ACCOUNTING:

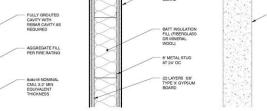
WHY IS IT IMPORTANT?

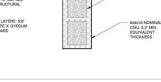


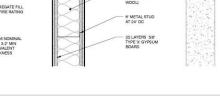
IT IS ANTICIPATED THAT IT WILL BE RESPONSIBLE FOR **72%** OF THE CARBON EMISSIONS ASSOCIATED WITH NEW BUILDING CONSTRUCTION

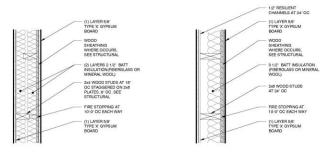

Kieran Timberlake - Carbon Accounting https://kierantimberlake.com/files/pages/631/embodied-c.gif?1619060464544

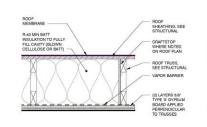


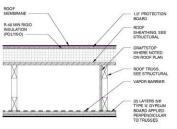



ASSEMBLY COMPARISONS:


EMBODIED CARBON ANALYSIS

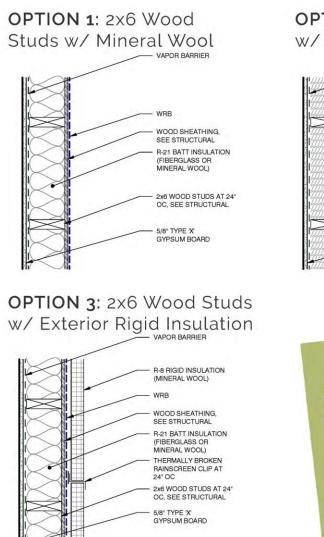


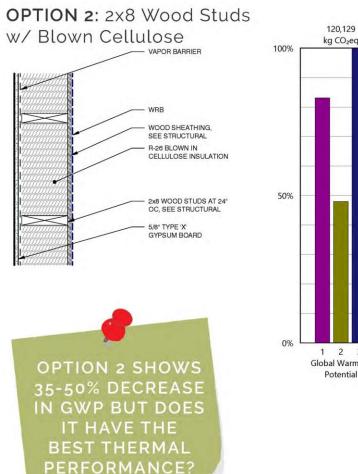


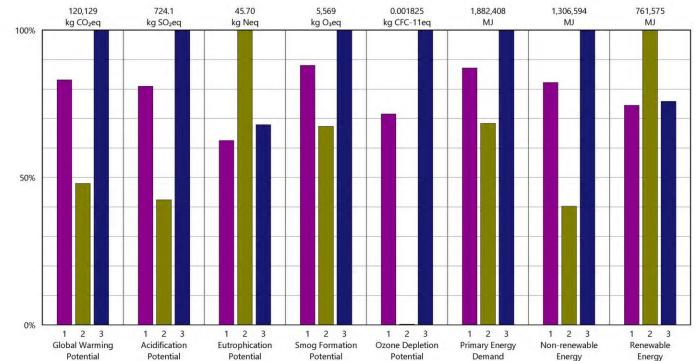

UTILIZED THE TALLY DESIGN OPTION COMPARISON TOOL WITH REVIT

2 COMPARISON 2

3 COMPARISON 3

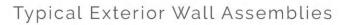


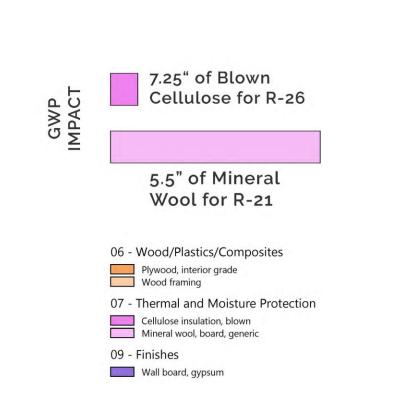


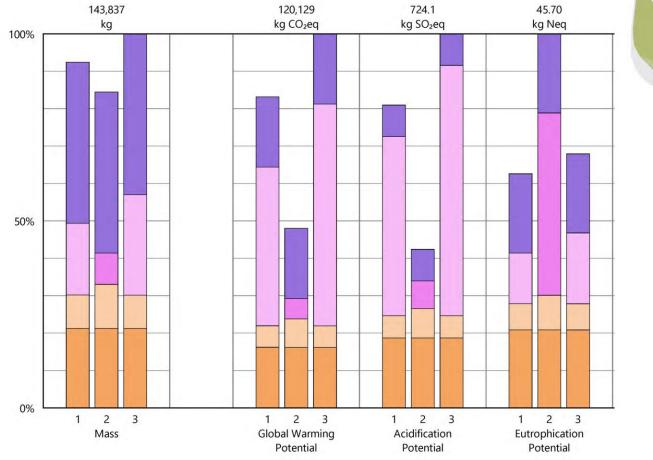


COMPARISON:

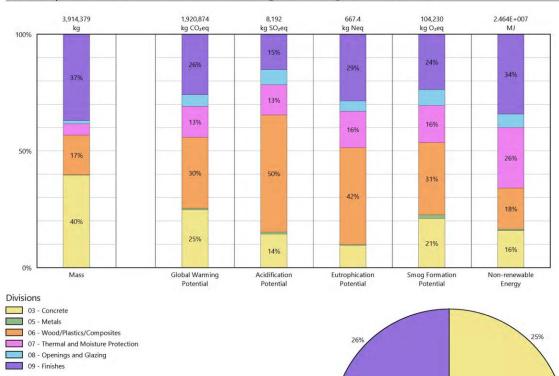
Typical Exterior Wall Assemblies







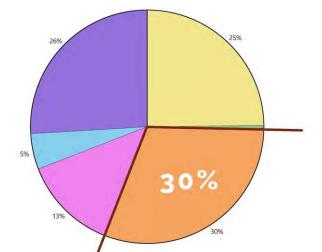
COMPARISON:


OPTION 2 consistently performed better in each of the Environmental Impact Categories - with the <u>exception of Eutrophication Potential</u>. This reminds us to consider the trade-offs of each decision and how performance changes based on categories being assessed. FUTURE EXPLORATION OF CELLULOSE WITH BEST BLOWING AGENT FOR ENVIRONMENT

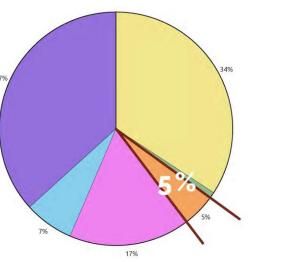
SALAZARCHITECT

Embodied Carbon Impact for Goldcrest by Life Cycle Stage

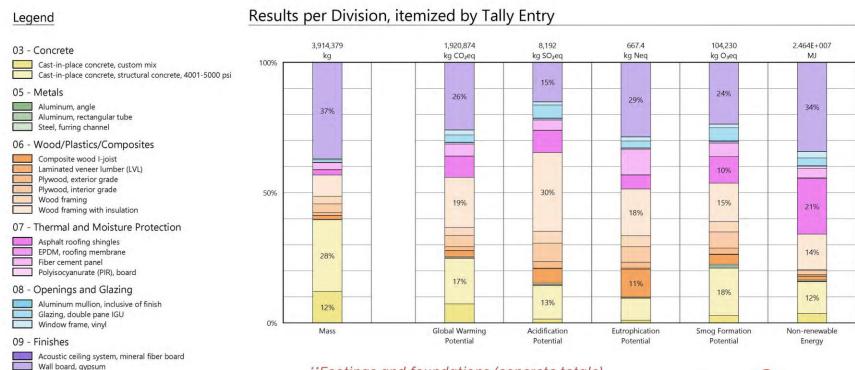
Results per Life Cycle Stage



Results per Division -- Not accounting for Biogenic Carbon


Again the question arises: accounting for biogenic carbon??

When it is not included the wood stud walls account for 30% of the total carbon count - the greatest impact of any division of GWP.


Results per Division -- Includes Biogenic Carbon

GWP DECREASES FROM 1,920,874 to 1,380,839

SALAZARCH

Embodied Carbon Impact for Goldcrest Based on Materials

**Footings and foundations (concrete totals) are an estimate in this analysis; in subsequent Tally results this value may change.

Gypsum Wall Board accounts for **26**% of the total embodied carbon in the project!

Gypsum has a huge impact and appears all throughout a multi-family project with double layers for demising walls.

<u>Lightweight gypsum</u> products with <u>less</u> <u>water in the mix</u> can be used to reduce energy intensity.

Optimize the thickness of gypsum being drawn - get it <u>as thin as possible.</u>

Optimize the interior elevations and carefully <u>dimension relative to gypsum</u> <u>sheet size</u> to limit the amount of wasted material.

SAL AZAR

Embodied Carbon Impact Comparison Across Future Projects

3/24/2021

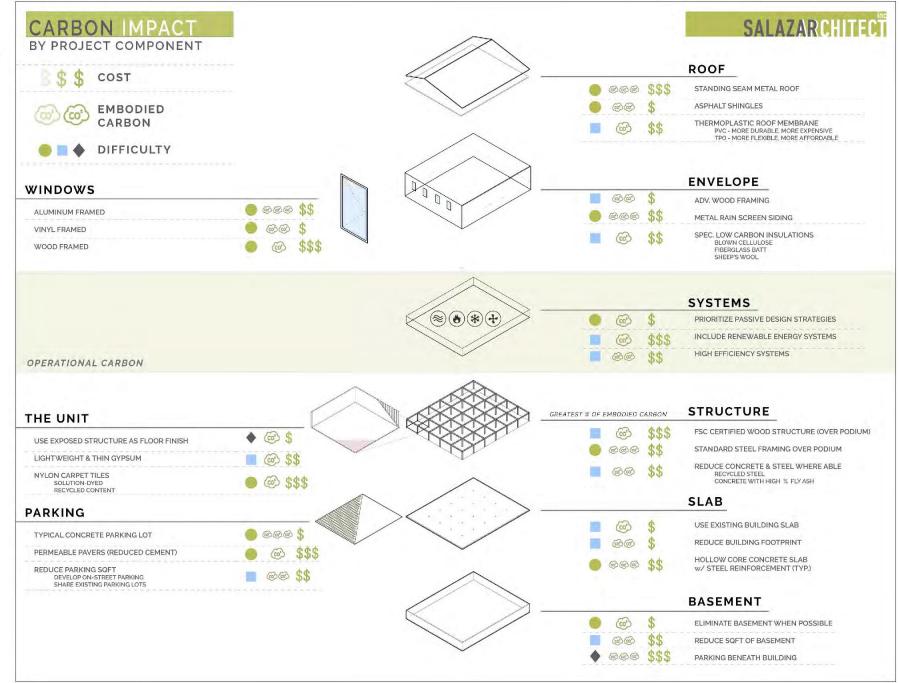
Goldcrest Embod	lied Carbon	
Report Summ	nary	
Created with Tally Commercial Version 2020.06.09.01		Goal and Scope of Assessment Understand the building's embodied carbon impact after the conclusion of Schematic Design.
Author	csigloh	the second s
Company	Salazar Architects	
Date	3/24/2021	
Project	GOLDCREST	
Location	172ND TERRACE, BEAVERTON, OR 97007	
Gross Area	68359 ft ²	
Building Life	60 years	
Boundaries	Cradle to grave, exclusive of biogenic carbon; see appendix for a full list of materials and processes	

GOLDCREST

Environmental Impact Totals	[A1-A3]	Construction Stage [A4]	Use Stage [B2-B5]	End of Life Stage [C2-C4]	Module D [D]
Global Warming (kg CO2eq)	1,122,640	22,735	650,755	260,914	-136,170
Acidification (kg SO2eq)	4,772	111.9	2,651	1,176	-519
Eutrophication (kg Neq)	252.1	8.818	240.0	184.8	- 18.3
Smog Formation (kg O ₃ eq)	55,082	3,619	40,774	10,489	-5,734
Ozone Depletion (kg CFC-11eq)	0.007775	7.818E-010	7.935E-005	1.683E-008	2.235E-004
Primary Energy (MJ)	1.882E+007	332,167	1.459E+007	1,517,189	-2,908,860
Non-renewable Energy (MJ)	1.382E+007	324,260	1.090E+007	1,418,993	-1,821,633
Renewable Energy (MJ)	5,003,573	7,986	3,690,344	99,449	-1,083,535
Environmental Impacts / Area					
Global Warming (kg CO2eq/m²)	176.8	3.580	102.5	41.08	-21.4
Acidification (kg SO ₂ eq/m ²)	0.7514	0.01762	0.4174	0.1852	-0.08175
Eutrophication (kg Neq/m ²)	0.03969	0.001389	0.0378	0.0291	-0.002889
Smog Formation (kg O ₂ eq/m ²)	8.673	0.5698	6.420	1.652	-0.9029
Ozone Depletion (kg CFC-11eq/m) 1.224E-006	1.231E-013	1.249E-008	2.650E-012	3.520E-008
Primary Energy (MJ/m²)	2,963	52.30	2,297	238.9	-458
Non-renewable Energy (MJ/m ²)	2,176	51.06	1,716	223.4	-287
Renewable Energy (MJ/m²)	787.9	1.257	581.1	15.66	-171
1.					tally.
				CAR	DDIED BON QFT

Environmental Impact Totals	Product Stage [A1-A3]	Construction Stage [A4]	Use Stage [B2-B5]	End of Life Stage [C2-C4]	Module D [D]	
Global Warming (kg CO2eq)	1,122,640	22,735	650,755	260,914	-136,170	
Acidification (kg SO ₂ eq)	4,772	111.9	2,651	1,176	-519	
Eutrophication (kg Neq)	252.1	8.818	240.0	184.8	-18.3	
Smog Formation (kg O₃eq)	55,082	3,619	40,774	10,489	-5,734	
Ozone Depletion (kg CFC-11eq)	0.007775	7.818E-010	7.935E-005	1.683E-008	2.235E-004	
Primary Energy (MJ)	1.882E+007	332,167	1.459E+007	1,517,189	-2,908,860	
Non-renewable Energy (MJ)	1.382E+007	324,260	1.090E+007	1,418,993	-1,821,633	
Renewable Energy (MJ)	5,003,573	7,986	3,690,344	99,449	-1,083,535	
Environmental Impacts / Area						
Global Warming (kg CO ₂ eq/m ²)	176.8	3.580	102.5	41.08	-21.4	
Acidification (kg SO ₂ eq/m ²)	0.7514	0.01762	0.4174	0.1852	-0.08175	
Eutrophication (kg Neq/m ²)	0.03969	0.001389	0.0378	0.0291	-0.002889	
Smog Formation (kg O₃eq/m²)	8.673	0.5698	6.420	1.652	-0.9029	
Ozone Depletion (kg CFC-11eq/m ²)) 1.224E-006	1.231E-013	1.249E-008	2.650E-012	3.520E-008	
Primary Energy (MJ/m ²)	2,963	52.30	2,297	238.9	-458	
Non-renewable Energy (MJ/m ²)	2,176	51.06	1,716	223.4	-287	
Renewable Energy (MJ/m ²)	787.9	1.257	581.1	15.66	-171	

3. Developing an Info-graphic for Client Communication



COMPARISON FOR CLIENTS

A BREAKDOWN OF DESIGN DECISIONS WITH RESPECT TO EMBODIED CARBON, COST, AND DIFFICULTLY.

BALANCING SUSTAINABLE DESIGN WITH BUDGET & SCHEDULE RESTRAINTS ASSOCIATED WITH MULTI-FAMILY HOUSING.

> DISCUSS SUSTAINABLE DESIGN OPTIONS EARLY ON

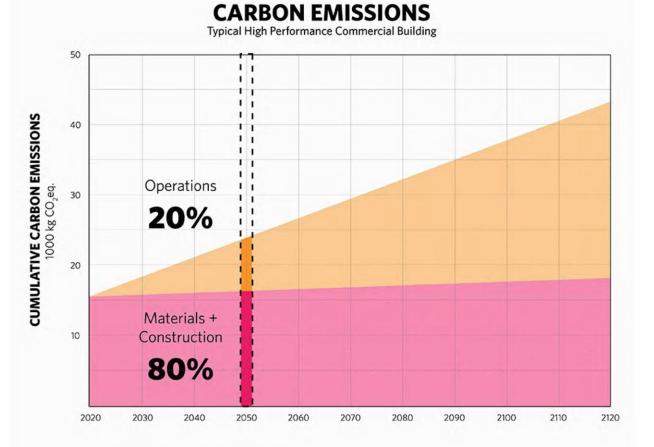
Looking Back to Move Forward: Reflections & Next Steps

OPERATIONAL CARBON vs EMBODIED CARBON:

HOW TO QUANTIFY AND TRACK?

REFLECTIONS:

MAJOR TAKE AWAYS & LESSONS LEARNED


» UP UNTIL THIS POINT, **OPERATIONAL CARBON** HAS BEEN **PRIORITIZED IN BUILDING SUSTAINABILITY**

» EMBODIED CARBON NEEDS TO BE AN EQUAL OR GREATER FACTOR IN BUILDING DECISIONS

» EMBODIED CARBON IS A **DIRECT RESPONSIBILITY** FOR ARCHITECTS - MATERIALS!

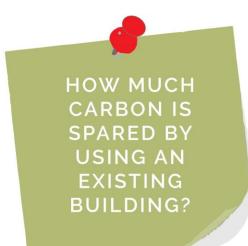
» ONCE EMBODIED CARBON HAS BEEN POURED INTO OUR PROJECTS - THERE IS NO GOING BACK

» POLICY & ENERGY CODES NEED TO EXPAND TO INCLUDE EMBODIED CARBON DECISIONS

Kieran Timberlake - Carbon Accounting

https://kierantimberlake.com/files/pages/631/embodied-c.gif?1619060464544

SAI A7AR


LOOKING AHEAD:

NEXT STEPS FOR CARBON ACCOUNTING...

IS THE BEST BUILDING NO BUILDING?

IS OUR BEST FOOT FORWARD USING AN EXISTING BUILDING?

HOW DO YOU QUANTIFY THE TRADE OFF BETWEEN A LESS OPERATIONALLY EFFICIENT "OLD" BUILDING AND A NEW, NET ZERO BUILDING?

Williams Plaza Apartments - Portland, Oregon Renovated Project by Salazar Architects

THANK YOU!

Expanding the Scope of Carbon Accounting for Projects Net Zero Emerging Leaders Internship

Courtney Sigloh - cysigloh5k@gmail.com

April 29th, 2021

