

Lessons from a Pioneer Net Zero Building, Painters Hall at Pringle Creek Community

Allies for Efficiency

January 5, 2017

About Energy Trust

- Independent nonprofit Serving customers of Portland General Electric, Pacific Power, NW Natural, Cascade Natural Gas, and Avista.
- Providing access to affordable energy
- Generating homegrown, renewable power
- Building a stronger Oregon and SW Washington

New Buildings Events

Allies for Efficiency (AFE)

- Case study presentations on high-performance design and construction projects
- Take place 3-5 times per year in Portland + regionally

High Performance Design Technical Trainings

- Advanced training events for designers, architects and/or engineers
- Take place 2 3 times per year
- Content is focused on specific techniques or technologies

Building Energy Simulation Forum (BESF)

- Advanced energy modeling presentations
- Topics relevant to energy modelers / analysts, and engineers
- Take place every other month, remote access always available

Upcoming Allies for Efficiency Trainings

February 23, 2017: Allies for Efficiency *Westmoreland Union Manor – Major Renovation of a Senior Living Facility* Portland, Oregon

Upcoming Building Energy Simulation Forum Trainings

BESF usually takes place the third Wednesday of every other month at the Ecotrust Building at noon.

February 15, 2017: Case Study – Modelling for the Bullitt Center, Presented by PAE

April 12, 2017 Presentation on ASHRAE 209P

Training & Education Webpage

energytrust.org/commercial/commercial-training-events/

RESIDENTIAL COM

COMMERCIAL INDUSTRY + AGRICULTURE

TURE RENEWABLE ENERGY

Commercial . Commercial training - Everity

Boost your knowledge with Energy Trust's continuing education opportunities and special training events. Trainings include real-world examples, case studies, and detailed technical information presented by experts from the fields of architecture, engineering, construction and development, as well as specialists in a variety of building types and market sectors. Attendees may be eligible for continuing education units, CEUs.

Find Upcoming Trainings and Events

Net Zero Fellowship

- Up to two fellowship grants, not to exceed a combined total of \$50,000, to support net-zero energy research over 12 to18 months
- Funding for new research to advance design best practices, technologies and policies, and the overall net-zero community in Oregon
- Application deadline January 9, 2017
- Learn more at energytrust.org/zero

Questions?

Have questions about upcoming training and education opportunities *or* about becoming an Energy Trust New Buildings Ally?

Contact Amanda.Davidowitz@clearesult.com

Thank You

Amanda Davidowitz Market Outreach Specialist Amanda.Davidowitz@clearesult.com

Painters Hall Getting To Net Zero

James Meyer, Pringle Creek Community Jeffrey Becksfort, PAE Consulting Engineers Jonathan Schachter, Sustainable Development Inc.

www.pringlecreek.com |

Energy Trust December 15, 2016

Fairview Training Center 1908-1998

- 275-acre former state property
- Incredibly beautiful landscape
- Close-in, 3 miles from downtown

Clean, Green, Affordable, Equitable,

Sustainable Fairview – 2001

- Planning process was collaborative and community-based from the very beginning
- Charrette and design workshops to develop master planning principles and layout of entire site.

Pringle Creek Community - 2005

- **32** acre property: native tree stands, fish-bearing stream.
- Natural and built resources...creek, buildings
- Break into thirds; parks/streets/structures.
- 146 homesites (16 acres) and 8 commercial lots (4 acres) in Village Center.
- Design guided by
- **10 Principles** of Sustainable Development.

Sustainable Redevelopment: Pringle Creek Community

The first project to achieve Net-Zero Energy Building Certification by the Living Future Institute, Pringle Creek's LEED Platinum Painters Hall Community Center has become the beest and hub of this fully innovative community.

- NZEB Certification (Painters)
- LBC Petal Recognition: Energy|Equity|Beauty
- LEED Platinum (Painters)
- NAHB 2008 Energy Value Silver Award
- NAHB 2007 Green Land Development of the Year

Solar Analysis & Geothermal Potential

District Ground-Source Geothermal & Irrigation

Sun Angle Calculations

Storm Water - Porous vs. Conventional Asphalt

Cottage House

OREEN FEATURES OF COTTAGE HOME

EXTERIOR CONTRUCTION:

- Exterior well and used training user advanced framing techniques with engineered inerties and PSC-cortified* banker to allow more invaluation and reduce the need of extrasseous framing lumber without compromising the sinctranal integrity of the banker
- 2 High performance extense envelope insulation at reaf and walk user a combination of formaldehyde five sprov-form insulation, blows onflutose, and rigid polytocynourcate insulation.
- 3 Ioundation: 30% fly-cole contracts max
- 4 Whendows: Juld-Wen EnergyStor¹⁹⁹ Low-E glass Low maintenance aluminium clad extensor on wood U value – 32 (Code requirement) U = 40) Locally sourced and manufactured in Bend
 - [8% window to wall area
- 5 Siding: Pre-printed Hand-Plank"* cement fiber top safing
- 6 Roofing: Elk Composition Cool Color series (reflectance of 27)
- 7 Metal Roofing: Locally searced, high mcycled centent,
- Cool Colm series 50 year life
- 8 Loss-VOC** paint on exterior surfaces

*FSC: Forestry Stewardship Council

Air internationed, non-printh organization conversion for the conservation, protecture and nervoursam of the world's sensing finance.

**VOC: Vedatile Organic Compounds Materials made with Low POC's time alreast no barrieful atf-pages

INTERIOR MATERIALS:

- Henring: Locally second Madrone hardward four with low-VOC** natural firsh. Corpeting is 100% Wool (No-VOC) 10. No-VOC point in the interior.
- Cubinets: Formula/hydro-fore cabinetry with Bench doars and water-based, low VOC finish
- 12 Groupgood certified Natural Quarte solid surface counterrupt and roombil

ENERGY & RESOURCE SYSTEMS

- 13. Geothermol: Water to Air, High Elizaency Medi Fump
- 14 Zoned Energy Recovery Ventilator. Fresh air and heat neavery
- 15 Solar Water Pre-Heating: 40 tabe thermomax system
- 16 Salar Electric Systems 2kW Photovollast
- 17 Compact Florescent Lumps (CFLs) in all lighting fixtures
- 16 Energidiar¹⁶ Applances (kitchen, kiundiz, electronica)
- 19 Dual Flush Todots: 1.6/.9 gallons per flush (gpf)
- 20 Shower Heads: (.6 gollons per minute (gpm)
- 21 Kitchen Fouroit: 1.0 gpm Vanity Faucet: 1.5 gpm
- 22 Native drought tolerant plants and limited laws irrigated with a drop irrigation system. Optional Bainwater Haresting collects
 - water run-off from malk and stores in externs to irrigate lands oping in the day season. Plantings also reduce mind for berbicides.
- main almost no barrellal off-pages

- 2 kw photovoltaic array
- 40 vacuum tube solar domestic hot water collectors

Restore / Reuse

Final Village Center Concept

Net-Zero Community Center of Activity Getting to NZEB - Everything Matters

Needs of the Neighborhood

Heating and Cooling Energy

- Benchmarking
- Capacity

Water for Landscape and Gardens

Cascading Use

Disposal (Recycle)

Community Center Building – Net Zero Design

- Integrated package of energy efficiency design features
- Modeled with DOE2.2 an hour by hour energy simulation program
- Groundwater-coupled heat pumping and supplemental cooling
- Zonal supplemental heating
- Point of use electric potable water heaters

How to Get NZEB +

- Everything Matters
 Water
- 🛛 Air
- Energy
- People

Air Quality Comfort Control

Operable Windows, Individual Control, Visible CO2 Sensors

Energy

Materials Durability Performance Renewables

Site materials, salvage materials, minimum demolition, maximum reuse, good envelope, high performance systems, ghps, pv's A building that produces at least as much energy through renewable sources as it uses over the course of a year.

NET ZERO*

[net][zeer-oh] n. adj. Net Zero Site Energy Net Zero Source Energy Net Zero Costs Net Zero Carbon

*http://www.nrel.gov/docs /fy08osti/41957.pdf

The earth receives more energy from the sun in just one hour than the whole world uses in a year. *

• Why Net Zero?

BI

DNS --

The lot and set of

Challenges

Cultural, Technical, Financial

Hour of operations

Choice of computers

Energy use feedback to tenants

Post occupancy survey

First Cost Trend

Average Price of PV

Source: Barbose, Galen L. Darghouth, Naim, Weaver, Samantha, and Wiser, Ryan H. Tracking the Sun VI: An Historical Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2012. Berkeley, 2013.
Incentives

Simplified Regulation (Net Metering)

Preferential Treatment (Zoning)

Investment Based (% of Cost)

Capacity Based (\$ per kW, Power)

Production Based (\$ per kWh, Energy)

Net Zero Today

Rocky Mountain Institute HQ - 15,600 SF

The Bullitt Center - 51,000 SF

Zenger Farms – 16 Acres

Georgia Tech - 42,500 SF

Sokol Blosser Winery - 11,670 SF

Achieving Net Zero

PAE's 6-Step Approach

Set Aggressive Goals

Choose Efficient Systems

Analyze the Climate

Reduce Loads

Opt for Renewables

Verify Performance

Set Aggressive Goals

Analyze the Climate

Reduce Energy Use

Energy Modeling

Schematic Design:

Explore energy strategies (insulation, windows, mass, lighting, heat pumps) Design Development:

Size Heat Pump (7.5 tons)

Construction Documents:

Minimum renewable energy system size (8.3 kW)

Review lighting system design (0.65 Watts/SF) Construction and Occupancy:

LEED

External incentives

As-built

Energy Modeling

- Used to Develop and Test Design
- Evolved in Step with Design
- Used Sounding Board to Push for Design Revision as Needed
- Used to Understand the Heating and Cooling Loads
- Used to Iteratively Test Design Strategies that Reduce Loads to Validate Passive Design Solutions (insulation, mass, natural ventilation, daylighting)

Choose Efficient Systems

Underfloor Air

Natural Ventilation

Geothermal

Radiant Floor

Radiant Ceilings

Choose Efficient Systems – Painters Hall

- Wall (R-19) and attic insulation (R-30)
- Air-tight Construction (0.02 cfm/sf)
- Window replacement (U-0.32)
- Ultra-efficient electric lighting (0.72 w/sf)
- Daylighting / occupancy sensors / reflective colors
- Passive ventilation and cooling
- Zonal supplemental heating (to support off-hour use)
- Point of use water heaters
- On-site Photovoltaic System (20.2 kW installed)
- Well-water coupled heat pumping (6-ton GSHP)

District Geothermal Loop

Painters Hall - District Geo-Exchange System

Painters Hall – Harvester of Renewables

Opt for Renewable Energy

- System Capacity = 20.2 kW
- System cost: \$210,901.
- Incentives: \$163,669.
- Depreciation: \$61,012.
- Value of kWh: \$2,743/yr
- 4 Year Return
- Savings by 2014: \$24,752
- Savings by 2030: \$68,640

Roof Tilt: 26 degrees Azimuth: 205 degrees 96 SANYO 210N panels

Renewables - Painters Hall Geothermal Loop

- Significant energy savings Painters Hall HVAC 3,219 kWh or \$360 for year.
- Cost of infrastructure 90% lower, as a shared resource for neighborhood.
- Some homeowners seeing a \$250 heating and air conditioning cost for the entire year.

Testing & Commissioning

Post-occupancy Evaluation

Measurement & Verification

Painters Hall – Actual Performance

Actual Performance

Painter's Hall EUI

Actual Performance

"Hidden" Geothermal Energy

Modeled vs. Actual Energy Use

Building Energy Use (May 2010 – April 2012

Initial vs. Final Models

Case Study: The Bullitt Center

Net Zero Energy in Seattle

Energy Use + Solar Budget

Predicted vs. Actual

Bullitt Center Performance

Modeled and Actual

Painters Hall Post-Occupancy

Value of Existing Building

Renovation Cost (3200 sf)

Time, materials, labor, FF&E:\$404Design, engineering, LEED, NZEB:\$39,Site, landscaping, concrete, paint:\$7,6

\$404,485 \$39,922 \$7,617

Total: \$485,288 (\$151psf) + Land 0.32 acre: \$111,140

Grand TOTAL: \$596,428 (\$186 psf)

Operational Cost

Cost: \$2,385 per year

Savings of around \$3,064 per year or 56% reduction

OPERATIONAL COSTS

- Baseline: 60,578 kWh/yr
- Projected: 19,565 kWh
 - 68% reduction from baseline.
- Actual: 15,292 kWh
 - 22% further reduction.
- Overall energy use reduction: 75%
- Annual energy savings: around \$5,434 per year.

Typical Week: Blue is our "net"

Typical Morning & Early Afternoon

Typical Morning & Early Afternoon

5,293 kWh per year! 25% of total building consumption. 24 PV Panels – \$35,000

Equity Imperative 16: Human Scale + Human Places

www.pringlecreek.com

Energy Trust, New Buildings Path to Net Zero Incentives

It all adds up to zero

 Increased incentives for early design, technical assistance, installation and

post-occupancy

- Technical resources and assistance from kick-off through occupancy
- Incentives for net-zero certification

Path to Net Zero

- Increased incentives for early design, technical assistance, installation and post-occupancy
- Technical resources and assistance from start to finish
- Incentives for net-zero certification

Chemeketa Applied

Technology Building Path to Net Zero high-efficiency

academic building, featuring:

- High efficiency hot water heating
- Improved building envelope
- Daylighting with lower light levels
- Heat recovery
- Natural ventilation

Energy Trust incentives: \$78,400

Estimated annual savings: 133,829 kWh and 7,253 therms

Estimated utility cost savings: \$16,500/year

Solar Resources for Public Buildings

Solar Trade Allies

- Provide expertise in solar technology
- Complete incentive paperwork

Cash Incentives

- Solar Feasibility—Up to \$1,700
- Solar Installation—Up to \$150,000

Questions?