

ALLIES FOR EFFICIENCY WESTMORELAND UNION MANOR

SENIOR HOUSING ENERGY RENOVATION

WUM - ULRA

- Union Labor Retirement Association was incorporated in 1962 as a non-profit with the intention of providing housing and related services for elderly persons
- In 1965, the ULRA purchased this piece of property from Fred Meyer, who had hoped to build a store here
- WUM is the largest affordable housing community for seniors in the state of Oregon
- In 1991, Manor Management Services took over the management contract for WUM and the other ULRA properties. MMS Inc. manages 21 properties and 1,686 affordable senior apartments in Oregon, Washington and Alaska
- Westmoreland's Union Manor has 301 apartments: 204 studios, 96 one-bedroom units, 1 twobedroom manager's unit
- In 2016, the average move in age was 74. The unit turnover rate during construction was 11%

Project Team

Development Consultant

lango.hansen

Architect

Landscape Architect

Structural and Civil Engineers

MEP Engineers

General Contractor

- Brian Sweeney, HDC Overview of project history, goals and funding
- Bill Lanning, MWA Existing building physical state and design solutions
- Andrew Lasse, Interface Building MEP analysis and systems replacement
- Howie Petker, Walsh Construction and tenant interface
- Questions??

Chaucer Court SW 10th and Salmon Completed 2012

Project Background

- The project was originally built with a federally-insured mortgage provided by the U.S. Department of Housing and Urban Development (HUD) due to be repaid in June 2015.
- WUM also received HUD Section 8 rental subsidies that covered 217 of the 300 units
- Through a HUD program known as SPRAC Senior Preservation Rental Assistance Contract -WUM applied for and was awarded more rental subsidies for those units not currently included in the Section 8 contract (2014). This brought the total of number of subsidized units to 284.
- The additional subsidy allowed the owner to leverage \$50M in equity and debt financing, contributing \$25M towards rehabilitation and modernization of the building
- The Project Team was assembled in 2014 to facilitate the application and subsequently analyze the building's needs and proceed with a design solution.
- Construction began June 2015 and will be complete by June 2017

Where do we start?

Renovate the building to insure another 50 years of safe and maintainable inhabitation thorough the following:

- Replace building envelope to improve energy efficiency and tenant comfort
- Bring the structural components into compliance with current codes
- Replace building systems HVAC, plumbing, electrical, alarm and security
- Improve interior finishes and fixtures
- Provide code mandated accessibility at units and site
- Address existing challenges of occupied units, flood zone, hazardous materials and noise

Active folk everywhere, all hours

Hazmat asbestos @ plumbing

Crystal Springs Creek

SOURCES	TOTAL
FHA Loan	25,927,400
LIHTC Equity	14,708,315
Value of Property	18,100,000
Energy Grants	650,000
Existing Reserves	527,286
Other (deferred fee, noi)	2,340,000
Total Sources	62,253,001

USES	TOTAL
Value of Property (acquisition)	18,100,000
Construction	27,463,750
Construction Contingency	2,746,375
Developer Fee	3,647,000
Financing Costs	3,897,125
Soft Costs	6,398,751
Total Uses	62,253,001

Westmoreland Union Manor – Building Design

AFE Presentation – Feb 23, 2017

Integrated Design Delivery

Analysis of Existing Building Conditions

Ground Floor Building Plan

2nd-7th Floor Building Plan

- Slab on grade foundation system
- Concrete lift slab construction 9" PT deck from second floor to roof.
- Steel columns support for PT deck
- Concrete exterior walls at ends of building with concrete elevator/stair core

Primary Structure

- Single glazed wall system with a 1-1/8" insulated aluminum panel.
- 57% glazing area at exterior wall.
- Approximately 85% of exterior wall envelope.

Primary Exterior Envelope – System

Pro's

- In small senior apartments, every inch counts. Existing wall system was limited to a 4" assembly depth
- Natural light and views.

Con's

- Wall system lacked thermal value
- In addition to window wall system, thermal breaks at exposed slab edge, balconies, roof and overhang at 1st/2nd floor transition
- Allowed for a tremendous amount of exterior noise to enter from McLoughlin Blvd and the railroad tracks
- Indoor air quality suffered due to age and joints in wall system

Primary Exterior Envelope – Qualities

Heating and Cooling

- 2 pipe system with roof top boilers and chiller
- Building limited to either heating or cooling mode
- Large radiators located in unit living room
 and bedroom

Electrical

- Single transformer located inside building Plumbing
- Galvanized piping system, primary shut-off allowed for isolation of half of building at a time

Pro's

• Heating/cooling system easy to understand, either in heat cycle or cool cycle

Con's

- Lack of control for residents over their individual environment
- Length of building and solar exposure cause one side of building to be hot and the other cold at the same time

Building M/E/P – Systems and Qualities

Goals – Preliminary Wall Analysis

Goals – Preliminary Wall Analysis

Goals – Preliminary Glazing Analysis

- Provide individual
 resident control
- Utilize systems that limit impact to residents in occupied apartments.

Goals – HVAC Analysis (Residential Apartments)

- Project staging in an occupied building 2 year construction duration
- Limiting impact of "open" wall areas during replacement
- Detailing of infill wall system to accommodate structural deflection
- Waterproofing of joints as renovation occurred in vertical stacks
- Addition of structural and accessibility upgrades which increased construction duration

Challenges – Exterior Envelope

New wall system increased length of apartment by 1-3/4", Remember every bit counts

Innovation – Exterior Envelope, Wall

- Prosoco Cat-5 liquid applied air/water barrier
- Prosoco Fast Flash
- Prosoco Joint and Seam Filler
- Prosoco AirDam
- ProtectoWrap foil faced SAM with BT primer

Innovation – Exterior Envelope, Mock-Ups!

Innovation – Exterior Envelope, Window Head

Innovation – Exterior Envelope, Window Head

π

Existing One Bedroom unit - Bedroom

Renovated One Bedroom unit - Bedroom

Existing One Bedroom unit – Living

Renovated One Bedroom unit – Living

Innovation – Exterior Envelope, Wall

- Minimum of 3" of insulation at roof low point, drains to middle of building.
- +14" insulation at roof edge. Design maintains character of existing building with a thin fascia profile.
- Not able to provide full wrap at roof edge due to budget.

Innovation – Exterior Envelope, Roof

Innovation – Exterior Envelope, Roof

- Insulation thickness allowed permanent utility services to be run below roof.
 Mother Nature's test: Snow remained on
- Mother Nature's test: Snow remained on section of new roof for 8+ days as it melted on the old system after 1 day

- Committed to approach of utilizing small independent systems to support resident heating and cooling needs.
- Needed to determine where to place exterior condenser units.
- Original thought was placing them on the existing decks.

Challenges – Residential HVAC Equipment

- Deck footprint was to small to locate condensing units
- 'Saddlebagged ' them outside of existing footprint
- Created new deck rail configuration which allowed for more usable space.
- Utilized area over condenser for additional usable deck area
- Exterior wall replacement was opportunity to improve deck access and function

Innovations – Residential HVAC Equipment @ One Bedroom Apartments

Innovations – Residential HVAC Equipment @ Studio Apartments

Innovations – More Mock-Ups!

Innovations – Exterior Expression

Lessons Learned – Exterior Envelope (the small details)

Lessons Learned – Condensate (where does it go?)

Lessons Learned – Condensate (where does it go?)

WESTMORELAND UNION MANOR RENOVATION

Mechanical Systems and Energy Modeling

Andrew Lasse PE, LEED AP Principal, Sr. Mechanical Engineer

Agenda

- : Existing Building Systems
- Central Mechanical Room
- Living Units
- Commons Areas
- 2: Mechanical Considerations

10000

- Goals
- HVAC Options
- Decision Making
- 3: Energy Modeling
- Existing Building
- Objectives
- Results

RISER DIAG

Due Diligence

Determine Scope & Budget Energy Modeling Full Design for HVAC Design Build for Plumbing & Electrical

3"HHWR

ABC

44

Existing Building Systems

SES IZ

12 582

15

3"HHWR

3 HW.

ABC

14h

R-12 - SEE RISER DIAG.

4" UP

History

- Constructed in 1966
- 160,000 SF
- 7 stories
- 301 Living Units
- Studios & 1 Bedrooms
- 9'-6" Floor to Floor
- Site Visit Feb 2014

Due Diligence Focus:

- 1. Determine Ways to Lower Energy Costs
- 2. Identify Aging Building Systems
- 3. Opportunities to Enhance the Quality of Interior Environment

Central Systems

Originally heating only – chiller was installed years after the building was completed.

- Rooftop Penthouse Mechanical Room
- Dual Cleaver Brooks, 4200 MBH Firetube boilers (original), 180 F
- Carrier Centrifugal Chiller, 300 tons, R-11
- Baltimore Aircoil Cooling Tower, 300 tons
- Two Pipe Change over system
- Pneumatic controls

Central Systems

Originally heating only – chiller was installed years after the building was completed.

- Separate Domestic Hot Water Penthouse
 Enclosure
- Jarco 1400 MBH Domestic Hot Water Heaters
- Galvanized & Copper Piping
- 4,000 Gallon Hot Water Storage Tank
- Recirculation Pumps

Living Units

Unit Ventilators at the exterior with constant exhaust from kitchens and restrooms. Piping and ductwork distribution vertically.

- McQuay Seasonmaker
- 3 way valves
- 180 F / 40 F distribution
- Greenheck downblast exhaust
- Sidewall Kitchen & Bath grilles
- Operable Windows

Common Areas

The first floor consists of various common area uses, served by a series of indoor air handling units utilizing the central heating & chilled water systems.

- PACE Air Handling Equipment
- Multizone
- Original to Building
- Asbestos
- Hydronic Unit heaters
- Mitsubishi Split for Elevator

Envelope

The original building utilized single pane glazing, glass doors at each unit balcony, with minimum insulation at metal panel and roof.

- Single Pane Glass
 - $\upsilon = 1.18 \text{ Btu/ft}^2 \text{hr*degF}$
- Window to Wall Ratio: 57%
- Wall: Metal Panel and plywood
 - U = 0.25
- Roof: 9" concrete, 1" rigid
 - u=.128 total

Mechanical Systems: Considerations

12

3"HHWR

ABC

144 5

RISER DIAG.

A" 15P

Due Diligence Findings

The due diligence phase allowed Interface to help identify systems in need of replacement, potential code improvements, and energy efficiency upgrades

Findings:

- Original equipment
 beyond useful life
- Significant energy loss through façade
- Inefficient Heating Systems
- Occupant Comfort
- Phasing Considerations

HVAC System Considerations

Replacement of the existing HVAC systems was a priority, with respect to the following considerations:

- Energy Efficiency
- Maintenance
- Occupant Comfort
- Ability to Phase construction

- Acoustical
- New Façade impacts
- First Cost and Payback

HVAC System Options

Various HVAC systems types were evaluated for the Living Units

- Variable Refrigerant Flow (VRF)
- Split System Heat Pumps
- Packaged Terminal Heat Pumps

Packaged Terminal Heat Pumps

Pros:

- Lowest First Cost, Installation Cost
- Works well for staged construction

Cons:

- Noisy
- Short life cycle
- Marginal Energy Efficiency
- Reduce envelop performance
- Need two units for 1 bedroom residences

Variable Refrigerant Flow (VRF)

Pros:

- Works for both Common areas and Living Units
- Many indoor fan coil options
- Energy recovery
- Higher efficiency
- Longer life cycle

Cons:

- Higher Installation cost
- Staged Construction challenges
- Proprietary

Split System Heat Pumps

Pros:

- Energy Efficiency
- High Heating Coefficient of Performance
- Improved lifespan
- Staging construction
- Minimal impact to envelop

Cons:

 301 condensing units to find a home for

Mechanical Systems: Determination

LEE RISERS

13

3"HHWR

ABC

Alt Same

12 38 2

R-12 - SEE RISER DIAG.

1++ 1 550

Living Unit HVAC System

Split System Heat Pumps with programmable t-stats were chosen for the Living Units due to the following criteria:

- Compared to PTHP:
 - More efficient, less noise, fits with façade, floor space, weatherization
- Compared to VRF:
 - Comparable efficiency,
 better phasing capabilities,
 lower first cost, comparable
 payback

Living Unit HVAC System

Split System Heat pumps installation outside existing balconies

- Challenge of Locating Units
 Access
- Clearances

• Visibility

Living Unit HVAC System

Controls upgraded to improve occupancy comfort and controllability

- Programmable Thermostat Upgrade
 Dual Heating and Cooling Setpoints
- Accessibility

• Fan controls

Common Areas HVAC Systems

Variable Refrigerant Flow (VRF) system was chosen for the first floor commons spaces.

- Ideal zoning (14 zones)
- High Efficiency, Energy recovery
- Logistics and Routing
- Dedicated Outside Air

Living Unit Exhaust System

Modification to exhaust systems included primarily the central rooftop fans replacement

- Constant volume exhaust
 - Kitchen = 60 CFM
 - Bathroom = 60 CFM
- Exhaust combined in shaft
- Sidewall & overhead grilles with OBDs
- Code minimum exhaust:
 - Kitchen = 25 CFM
 - Bathroom = 20 CFM

Domestic Hot Water Systems

DHW systems were upgraded early to serve mains ahead of phase construction

- HW mains at 7th Floor Ceiling
- Vertical distribution
- Recirculation Collects at Level 1
- Phasing Considerations
- Shut offs during construction

EXISTING HOT WATER DESIGN

FIGURE 2

Domestic Hot Water Systems

Condensing Hot Water heaters coupled with a horizontal distribution system

- Central Vertical Riser
- Horizontal Branches
- Tie in new units
- Maintain original vertical risers during construction

Energy

13

1-

3"HHWR

ABC

14/7

RISER DIAG.

E-1

A" UP

Goals

Existing Utility Bills

Energy End Use Breakdown

Energy Conservation Measures

Energy Trust of Oregon Incentives

EE RISERS

NA

Goals

Identifying the purpose and corresponding targets for the Energy Modeling process

- Primary Goal: Lower Energy Cost
- Determine most cost effective Energy Conservation Measures
- Obtain incentives from Energy
 Trust of Oregon
- Analyze paybacks using Energy
 Trust of Oregon criteria

Energy Modeling Approach

Interface used eQUEST energy modeling software for the purposes of analyzing building energy usage.

- DOE-2 eQUEST software
- Baselines:
 - Existing Building
 - Code Minimum (Energy Trust)
- Envelope Analysis
- HVAC Analysis
- Energy Trust of Oregon Analysis
Existing Utility Bills

Obtaining the existing building energy costs via utility bills allowed us to calibrate the existing building energy model baseline.

- Yearly Energy Cost: \$182,000
 - Gas: \$86,000
 - Electricity: \$96,000
- Energy Cost/SF/year: \$1.14
- Existing EUI:
 - 100.5 kBtu/SF/year
- Target Finder Median:
 - 106.4 kBtu/SF/year

Existing Building Energy End Use Breakdown

This breakdown represents the existing building energy end use.

- EUI: 100.5 kBtu/SF/year
- Major Energy Users:
 - Heating
 - Domestic Hot
 - Water
 - Lighting

Code Minimum Building Energy End Use Breakdown

This breakdown represents the Code Baseline energy end use for modeling to secure ETO incentives.

- EUI: 50 kBtu/SF/year
- Major Differences:
 - Domestic Hot Water
 - Heating Efficiency
 - Lighting
- Major Energy Users:
 - Heating
 - Domestic Hot Water
 - Lighting

Baseline Building Energy End Uses EUI: 50.0 Kbtu/sf-year

As-Designed Building Energy End Use Breakdown

This breakdown represents the Proposed Baseline energy end use, which includes the project ECMs.

- EUI: 35.2 kBtu/SF/year
- Major Contributors:
 - Domestic HW
 - Heating COP
- Lighting not included
- 30% reduction over baseline energy use
- 68% reduction over existing building energy use

Energy Conservation Measures

TARGETS:

Envelope (Roof, Walls, Glass) HVAC systems (Central and Residential) Domestic Hot Water Lighting (Separate Path)

RIGEN

3"HHWR

HW. ABC

Alt Same

ECM – Roof Performance

Improve roof insulation – replace existing 1" rigid with 3" rigid insulation

- Existing Assembly U Value: 0.128
- Designed Assembly U Value: 0.041
- Proposed roof will use two 1.5" layers of mineral wood board insulation.
- Existing 9" concrete roof remains below
- Area: 23,900 SF

Savings: \$1,695/year compared to existing building

ECM – Wall Performance

A parametric analysis was performed early in the design process to target the best, most cost effective wall assembly that saves the most energy for Westmoreland.

- Existing Wall:
 - Aluminum Panel / plywood,
 - Existing assembly U value: 0.25
- Proposed Wall:
 - 2x8 wood framed with R-27 blown in fiberglass
 - Proposed assembly U value: 0.04

Savings: \$2,760/year compared to existing building

ECM – Glazing Performance

High Performance Innotech argon filled triple pane windows as an upgrade to existing single pane glass.

- Existing Building:
 - 57% glass, U value 1.18
- Code Baseline Building:
 - 30% glass, U value: 0.45
 - SHGC: 0.40
- Proposed Building:
 - 35% glass, U value: 0.19
 - SHGC: 0.24

Savings: \$3,704/year compared to existing building

ECM – Domestic Hot Water

High Efficiency Domestic Hot Water Heater to replace aging existing equipment.

- Gas water heaters in Penthouse
- Rheem High Efficiency
 Condensing Water Heaters
- Existing Efficiency: 73%
- Code Baseline Efficiency: 80%
- Proposed Efficiency: 93%
 Savings: \$2,260/year compared to code baseline

ECM – HVAC Systems Living Units

Split system heat pumps for the residential areas and VRF with heat recovery ventilation for the level 1 commons.

- Residential Units:
 - Indoor residential Fan Coils
 - Condensing Units on Balcony
- Code Baseline:
 - Packaged Terminal Heat Pump (System 2)
- Total Energy Cost Savings: \$36,100/year
- Total % savings: 26% overall
 - Compared to Code Baseline

ECM – HVAC Systems Common Areas

Split system heat pumps for the residential areas and VRF with heat recovery ventilation for the level 1 commons.

- Ground Floor:
 - Variable Refrigerant Flow (VRF)
 - Heat Recovery Ventilators
- Code Baseline:
 - Hybrid gas fired VAV (System 7)
- Total Energy Cost Savings: \$36,100/year
- Total % savings: 26% overall
 - Compared to Code Baseline

ECM – Lighting

Existing compact fluorescent and incandescent fixtures were replaced with LEDs, as well as bringing areas up to code.

- Residences:
 - Existing vanity, scones, ceiling fixtures
 - Replaced with LED fixtures
- Corridors and Commons areas:
 - 2x4 recessed troffers with T8 lamps
 - Code spacing and LED lamp replacement
 - 2x4 and downlight LEDs
- Separate path through Energy Trust of Oregon

Energy Cost Savings

Existing Building Yearly Energy Cost: \$181,935 Projected Building Yearly Energy Cost: \$94,561 Total Energy Cost Savings: \$87,374 (48% savings)

3"HHWR 3"HW

ABC

1447 2000

Energy Trust Incentives

Cost Effective Measures:

Domestic Hot Water Upgrade

High Efficiency HVAC System Upgrade

Westmoreland Union Manor Renovation June 2015 through May 2017

West Elevation Area 6 of 18 Complete

EAST ELEVATION AREA 7 OF 18 IN-PROCESS

Area Sequencing for Cycling 18 Zones

SEQUENCE OF PRE-UNIT WORK :

- New Domestic Water to Building (Incl'g DCVA)
- New Boiler System Online (5 Gas Fired High-Efficiency Units)
- New Electrical Service to Building
- New IFS Distribution Gear (3 req'd)
- Distribution for Each System Prior to Initial Unit Stack Renovation

New Domestic Water Tap to Existing Combined Dom and Fire Lines

New Domestic Water Routing per PWB Requirements

New Dom Water DCVA (Double-Check) Vault Prep

New Dom Water DCVA (Double-Check) Vault

Domestic water shut-off

1 of 2 Original Gas-Fired Boilers (Fed by 5inch Nat Gas Line @ 5 psf)

Initial Demolition to Remove First Boiler to Permit Installation of New Water-Heating Units

Crane positioned to fly in boilers to penthouse

1200 lb. boilers rigged for placement

Structural deck removed for installation

Rigging and positioning

Boiler combustion/ exhaust ducting in place

Main Dom Boiler Header Assembly

Main Dom Boiler Header Assembly

Typical Corridor Routing of Water Dist System and Individual Unit Valves

Dom water routing, isolating north from south

Dom water routing isolating north from south

New PGE Vaults (3) and Associated Duct for Expanded Electrical Service

New 277/480vc Service for new HVAC

IFS Distribution and Transformer Gear to Service Mini-Split Heat Pumps per Unit

Existing Roof Congested with Cell Service Broadcast Gear (3 Carriers, Each Supporting Multiple Technologies)

Stack slab detail with initial hoisting sequence

Stack slab detail with subsequent hoisting sequence

PT slab dogging embeds at columns

Wall Fabrication And Pre-Application of WRB

Wall Inventory Ready for Installation

"Flying" Walls into Place as Demo Precedes per Floor

Wall Demo and Abatement of Existing Exterior Components

Installation of Seismic Gap Retaining Angle at Wall Head Note: Full Height Jack-Lines to Maintain Wall Plane and Eliminate Apex Drift

Installation of interior deflection head track

Walls Installed and Made Weather-Tight If Inclement Weather Anticipated

Temporary closure of doors & windows for weather

Waterproofing at Concrete Decks Interfaced with Wall Framing, Sheathing, & Back Dam – 96 hr. Cure Time

Exterior Glazing and Doors Installed, Cladding & Metal Staged

Head-Wall Seismic Gap with Backer Rod Installed Ready for Caulking

MEP Penetrations

MEP Penetrations Detailed -Ready For Rain-screen Cladding Cover

Initial horizontal flashings and clips installed

Ceraclad alignment and retaining clips

Finished deck coating and flashing interface

Final Product, Ready to Receive New Galv. Steel Railings

Transition Sealants Applied

Completed Installation of Deck Rails, Mini-Splits, And Perf Panel Screens to Finished Zone

Mobilization of Micro-Pile Drilling Equipment into Interior Shearwall Condition

Drilling of Pile No. 2 (of 4) in Building Interior – Ground Water and Spoils Created Substantial Challenges to an Occupied Building

Typical shotcrete shearwall re-steel full height of building: Pile-cap to roof slab, fully welded to columns

Questions/ Comments?