

Redefining possible.

USING BUILDING ENERGY MODELING TO INFORM THE NEXT DESIGN

Our Experience Creating the COMPASS Energy Benchmarking Tool

Building Energy Simulation Forum (BESF)
December 19, 2018

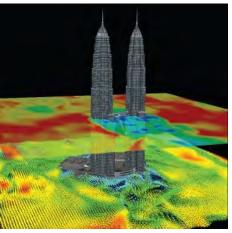
Speakers

Joel Good, M.A.Sc., P.Eng Associate – Building Performance RWDI

Matthew Hyder, MS, LEED GA, WELL AP Technical Project Coordinator RWDI

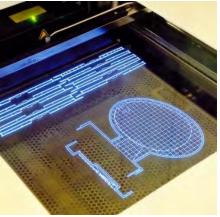
Agenda

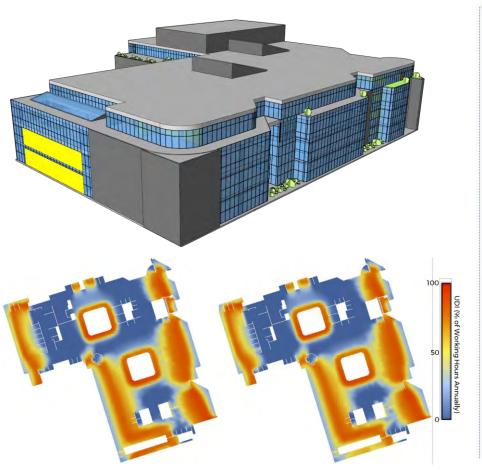
- 1. Introduction
- 2. Existing Benchmarking Tools
- 3. COMPASS Origins
- 4. COMPASS Description
- 5. COMPASS Demo
- 6. Takeaways & Next Steps

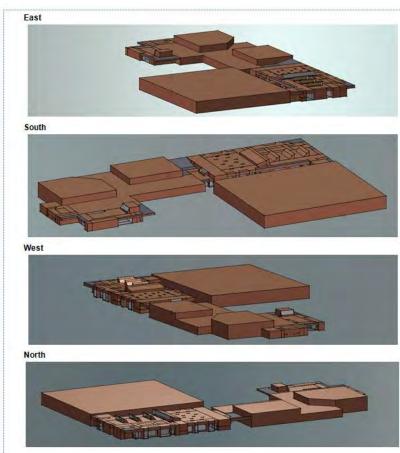

How do you make energy decisions at the onset of projects?

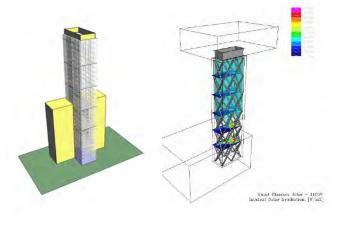
What benchmarking data do you use?

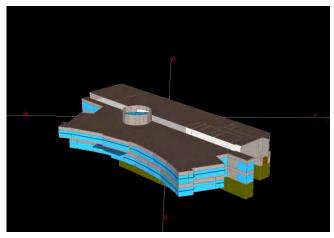
Introduction


RWDI








Copyright© 2018 by RWDI. All rights reserved.

RWDI

Energy Modeling

- LEED (ASHRAE 90.1)
- Oregon Energy Code
- Seattle Energy Code
- Title 24

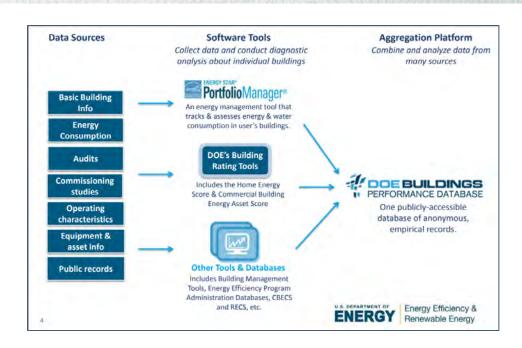
- IECC
- ETO Incentives
- ECM runs

Hundreds of models, tons of data points

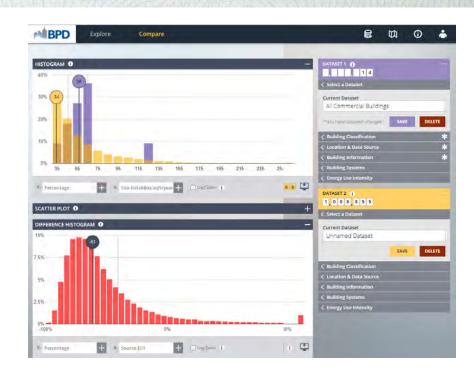
Wouldn't it be Nice

- Harness energy modeling experience
- Ocument & learn from our successes and failures
- Simplify reporting
- Learn from & share with the design community
- Apply current design knowledge, maintain security

Existing Benchmarking Tools


Commercial Buildings Energy Consumption Survey (CBECS)

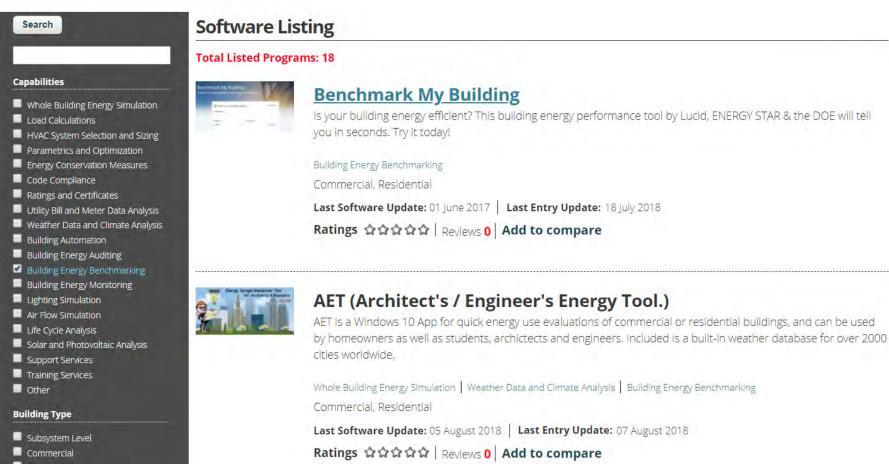
- Statistically representative sample of building stock
- Latest 2012 (2018 coming)
- Benchmarking existing buildings
- Analyze trends, impact of policy


Building Performance Database (BPD)

- DOE / LBNL June 2013
- Largest publicly available source of building energy performance data
- ~1 million existing commercial and residential buildings

Building Performance Database (BPD)

- Location, use + physical & operational characteristics
- Determine large trends, inform energy based decisions across markets and regions, establishing benchmarks, etc...
- Lacks data points for design learning



AIA 2030 Design Data Exchange DDx

- 2030 challenge reporting system
- Firm wide portfolio
- Ease of tracking and submission for AIA 2030, progress reports
- Better design thinking, but minimal inputs for design

State of Play

DESIGN COMMUNITY

Architects Engineers Energy Modellers

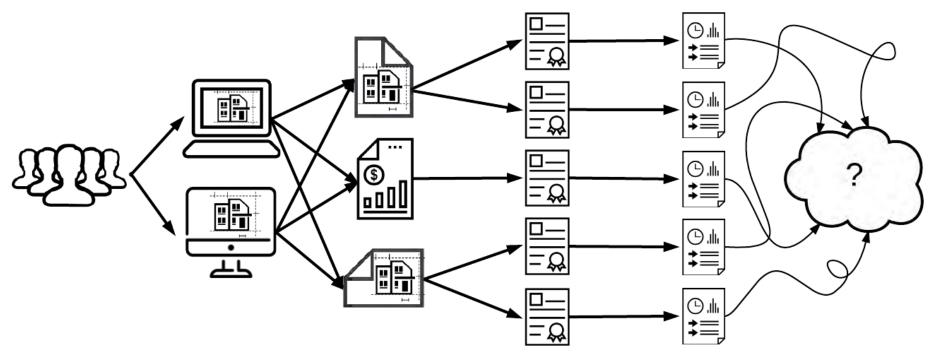
MODELLING SOFTWARE

eQuest IES EnergyPlus

MODELLING REQUIREMENTS

Reference Comparison Energy Use Intensity Energy Cost Reduction

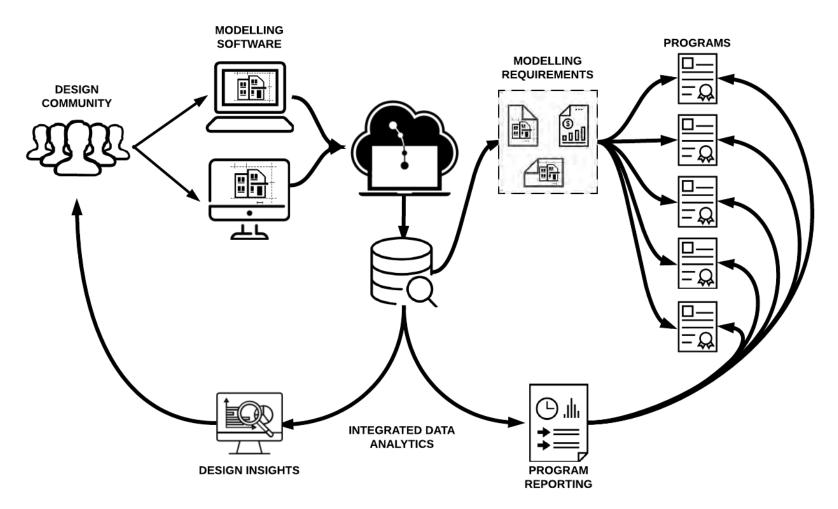
PROGRAMS


ON Building Code LEED 2030 Challenge HPNC Toronto Green Standard

PROGRAM REPORTING

Regulatory Requirement Progress Tracking Policy Development

INTEGRATED DATA ANALYTICS


Minimal

COMPASS Origins

COMPASS

The Value Proposition

Creating tools to enable conversations

- Experts & non-experts a like
- A common language
- Multiple lenses

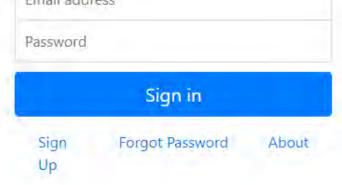
Foster an environment of continuous learning

- Redefining success
- Data collection

We are a community of designers

- How do we package our knowledge to create better buildings?
- Leverage data to advocate for change
- Can we share and learn from each other?

Letters of Support & **Beta Tester**



COMPASS

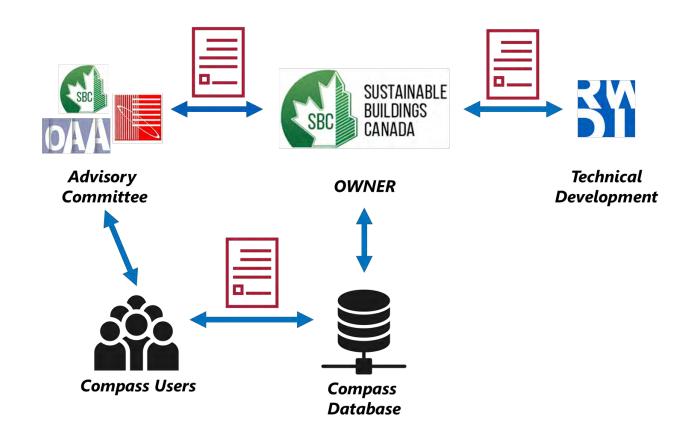
COMPASS Description

COMPASS Inputs

v1 built in Tableau

Python based code – compatibility

Drag and drop uploading


Visualization tools

Third party data storage - privacy

COMPASS Privacy

Governance Approach

COMPASS Inputs

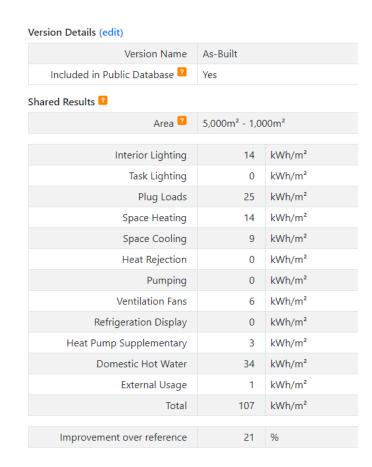
Drag and drop energy model files:

- eQuest
- IES VE
- Energy Plus

As designed

Baseline

Alternate (ECM) runs


Privacy settings

Extracts 400 variables

Energy breakdown – end-use breakdown, fuel-type breakdown... filter

Bubble chart – how does your project compare against the database... sort by like characteristics

Parallel Coordinates – tool displays building characteristics, use to compare how they impact total energy performance

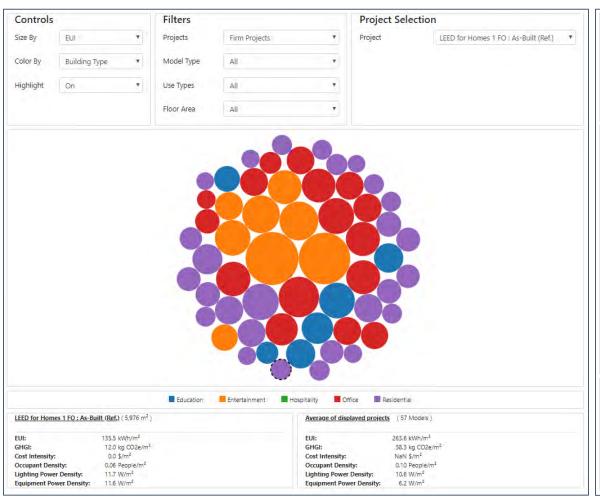
Building Properties						
Area	5,976	m²				
Volume	16,394	m³				
Energy Uses						
	Electricity (kWh)	Natural Gas (kWh)				
Interior Lighting	84,668	0				
Task Lighting	0	0				
Plug Loads	150,668	0				
Space Heating	52,958	28,897				
Space Cooling	56,006	0				
Heat Rejection	0	0				
Pumping	938	0				
Ventilation Fans	36,751	0				
Refrigeration Display	0	0				
Heat Pump Supplementary	19,841	0				
Domestic Hot Water	0	203,626				
External Usage	7,884	0				
Total	409,684	232,523				

Enclosure Details							
	Roof	Area (m²)	Skylight	Area (m²)	WWR		
Roof	1	1,686		0	0%		
	Wall	Area (m²)	Window	Area (m²)	WWR		
North		608	157		26%		
North East		61	38		62%		
East		560	181		32%		
South		615	299		49%		
South West		95	61		64%		
West		485	155		32%		
Total	2	2,425	891 37		37%		
			U-value (S.I) W/m²·K		R-value (S.I) m²·K/W		
Walls Abov	ve Grade	0.318		3.145			
Walls Belo	w Grade		0.102	9.784			
\	Windows		1.953		0.512		
	Roof		0.165		6.073		
Enclosure Abov	ve Grade	0.608			1.646		

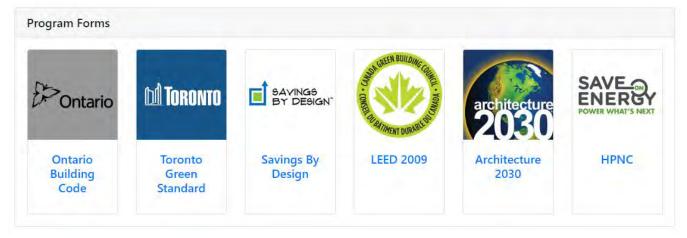
Gains						
People	363	People				
Lighting	37	kW				
Equipment	65	kW				
Mechanical Systems						
Heating Load exc. OA	-330	kW				
Heating Load inc. OA	15	kW				
Cooling Load exc. OA	252	kW				
Cooling Load inc. OA	262	kW				
Plant Heating Capacity	-296	kW				
System Heating Capacity	311	kW				
Plant Heating Efficiency	0	%				
System Heating Efficency		%				
Plant Cooling Capacity	204	kW				
System Cooling Capacity	58	kW				
Plant Cooling Efficiency	0	%				
System Cooling Efficiency		%				
Supply Air Rate	16	m³/s				
Outside Air Rate	1	m³/s				
Fan Load	9	kW				

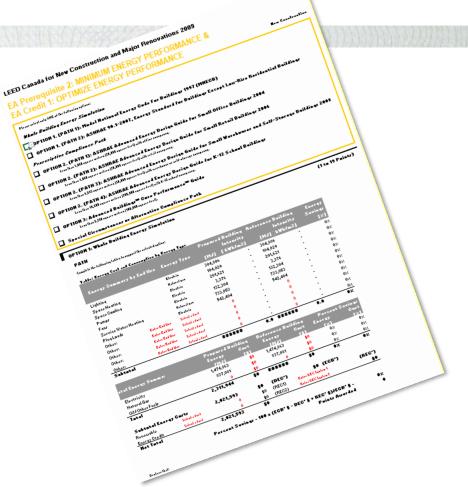
Energy Breakdown

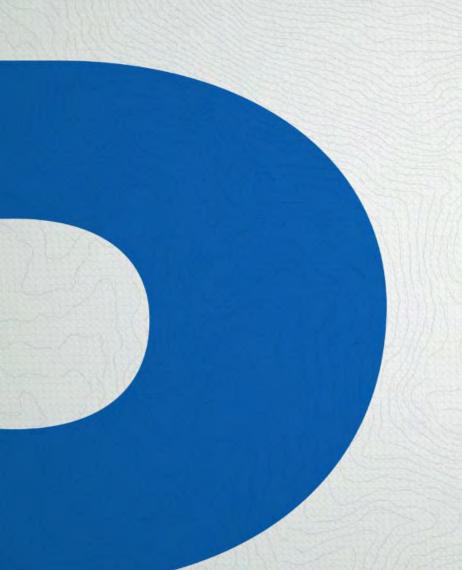
View where buildings expend their energy.


Bubble Chart

Compare various impacts of projects within the database.


Parallel Coordinates


Explore how various building characteristics impact energy usage and GHG intensities.



Submission reports

COMPASS Demo

Your Next Steps

- 1. Call to action
- 2. We need Portland, Oregon and PNW projects
- 3. Help inform local design!

Our Next Steps

- 1. Pushing past beta...
- 2. Expand regional capabilities
- 3. Units
- 4. Improving search capabilities
- 5. User help & feedback

QUESTIONS

THANK YOU

Joel Good, M.A.Sc., P.Eng Joel.good@rwdi.com 503.467.4710 x5707

Redefining possible.

Matthew Hyder, MS, LEED GA, WELL AP Matthew.hyder@rwdi.com 503.467.4710 x5712