CENTRAL HEAT PUMP WATER HEATING:

Sizing and Modeling

Paul Kintner, paul@ecotope.com Ecotope, Inc.

Energy Trust Building Energy Simulation Forum October 27th, 2021

WHY CHPWH?

Climate Change Global, federal, & state policies Codes & standards Capture incentives & rebates Lower operating costs Energy efficiency measures

ECOTOPE

Societal changes

WHY CHPWH?

DHW represents 25% of annual building use

CHPWH systems cut energy usage down by 3x

WHY CHPWH: TOU RATES & GRID FLEXIBILITY

CHPWH SYSTEMs

ЕСОТОРЕ

CHPWH **SYSTEM**

FOUR CHPWH SYSTEM COMPONENTS

- Primary heat pump water heater (HPWH)
- Primary HW storage
- Temperature maintenance system
- Controls

CHPWH SYSTEMS: INTRO

Dedicated HPWH connected by 01 **Dedicated Parallel** parallel piping Dedicated swing tank connected in 02 **Dedicated Series** series Primary & Temperature Combined 03 Maintenance System are combined 04 **No Recirculation** Heat Tape

SINGLE-PASS PRIMARY HPWH SYSTEM W/ PARALLEL TEMPERATURE MAINTENANCE TANK & MULTI-PASS HPWH

KEY CONSIDERATIONS:

- Single pass heating system for primary
- Dedicated heating system for temperature maintenance

Two systems work in parallel

SINGLE-PASS PRIMARY HPWH SYSTEM W/ SERIES TEMPERATURE MAINTENANCE TANK (SWING TANK)

KEY CONSIDERATIONS:

- Single pass heating system for primary
- Dedicated heating system for temperature maintenance
- Two systems work in series

COMBINED SYSTEM

ECOTOPE

KEY CONSIDERATIONS:

 Both primary & maintenance loads done by one system.

RISKS:

- Cycling & Sizing issues
- Low effective storage volume
- Low HPWH COP
- Technology dependent

MARKET DELIVERY: LEARN THE LANGUAGE

All the pieces are separate & come from multiple distributors and/or manufacturers.

SPECIFIED BUILT-UP SYSTEM

All the pieces are separate but come from a single distributors or manufacturer.

PACKAGED/SKID

Everything is assembled & delivered in a single package.

HPWH CONSIDERATIONS

- Air source / heat source
- Heating cycle (single pass / multipass)
- Height of control sensor(s)
- Pipe connections, size & location
- Insulation level

TWO TYPES OF HEATING CYCLES

Heats water to working temp. in single pass (usually for primary heating load)

HW STORAGE SYSTEMS: THERMAL STRATIFICATION

HW STORAGE CONSIDERATIONS

Physical space, room & door size
Multiple tanks, series or parallel?
Vertical is better than horizontal
Height of control sensor(s)
Pipe connections, size & location
Insulation level

ECOTOPI

WHAT IS A CHPWH SYSTEM?

Small Commercial System

(closet installation serving 5 apts)

Large Commercial System (basement installation serving 250 apts)

Multiple Commercial Systems (residential equipment serving 4-5 apts)

Multiple Sizes, Types, & Configurations

SMALL COMMERCIAL SYSTEM

- Residential unitary equipment in a commercial building?!
- 2-6 units
- Multiple unitary HPs (in parallel)

LARGE COMMERCIAL SYSTEM

- Commercial equipment; engineered system
- 200 units
- Dedicated heating system:
 - Single pass primary HPWH
 - Multi pass temperature maintenance system

MULTIPLE COMMERCIAL SYSTEMS

- Smaller residential equipment used in a commercial application
- 100 units
- Multiple central/commercial HPWH systems

HW SYSTEM DESIGN: SIZING

SYSTEM SIZING IMPACTS

55 Tons 1,000 Gallons

5 Tons 520 Gallons

ЕСОТОРЕ

SYSTEM SIZING

- Gas systems are sized w/ low storage and high heat capacity
- HPWH systems are sized w/ high storage and low city

< H₂O STORAGE > H₂O STORAGE > HEAT CAPACITY < HEAT CAPACITY

SYSTEM SIZING

Two Loads

Occupancy and Hot Water Load
Temperature Maintenance

SYSTEM SIZING : Hot Water Load

SYSTEM SIZING

Multi Family **Domestic Hot Water (DHW)** Demand

ЕСОТОРЕ

SYSTEM SIZING : Temperature Maintenance

SIZING FOR LOAD SHIFT

	What's changing?	Details
starting January 1, 2021	Longer winter season:	October 1 to May 31 (currently November 1 to April 30)
	Shorter summer season:	June 1 to September 30 (currently May 1 to October 31)
Starting June 1, 2021 Summer Hours Changes Winter Hours do not change)	Peak Hours:	3–8 p.m. weekdays
	Partial Peak Hours:	12–3 p.m. and 8–10 p.m. weekdays; 5–8 p.m. weekends
	Off-Peak Hours:	All other hours including most holidays
S tarting January 1, 2022 Summer Hours Changes Winter Hours do not change)	Peak Hours:	4–9 p.m. weekdays
	Partial Peak Hours:	2–4 p.m. and 9–10 p.m. weekdays 5–8 p.m. weekends
	Off-Peak Hours:	All other hours including most holidays

ALL WEEKEND AND HOLIDAYS HOURS ARE OFF-PEAK

12 a.m.

12 a.m.

ECOSIZER https://calbem.ibpsa.us/resources/ecosizer/

Tank Volume 285 Gallons

Swing Tank Volume 80 Gallons Heating Capacity 66.8 kBTU/hr

Swing Resistance Element 4.7 kW · 15.9 kBTU/hr

Occupancy 60.0 People

Apartments 30.0 Units

Daily Hot Water Usage 25.0 Gallons per Day per Person

ECOTOPE

Total Hot Water 1500 Gallons per Day

MODELING CHPWH SYSTEMS

HEAT PUMP PERFORMANCE

	Outdoor Unit (Heat Pump) Model No. GUS-A45HPA			
Residential	Performance	43-gal. system	83-gal. system	
	Energy Factor	2.65	3.35	
	First Hour Rating	69 gallons	97 gallons	
	Specifications			
	Water Temperature Setting	149 "F		
	Ambient Air Operating Temperature	-15"F to +110"F		
Constant COP	Heat Pump Capacity	15,400 Btu/h		
	Heat Pump Capacity	4.5 kW		
	Heat Pump COP	4.5		
	Refrigerant Type	R744 (CO ₂)		
	Compressor Type	Inverter		
	Power Voltage	208/230v –1Ph – 60Hz		
	Breaker Size	15 Amps		
	MCA	7.7 Amps		
	Outdoor Operating Noise Level	38 dB		
	Weight	123 lbs		
	Pipe Size (Tank to Heat Pump) ¹ / ₂ " (Cold & Hot)		d & Hot)	
	Max Length Inc Vertical	25 ft		
	Max Vertical Separation	1 0 ft		
	Max Water Pressure	95 Psig		

ЕСОТОРЕ

EQUIPMENT EFFICIENCY BOUNDARIES

What goes into a HPWH model

Climate Zone

- Hot Water Draws
- Specific HPWH Equipment
- Schematic
- Temperature Maintenance
 - System

HEAT PUMP PERFORMANCE

EFFICIENCY IMPACTS:

Lower Air Temperature

Warmer Entering Water

Warmer Leaving Water

CAPACITY IMPACTS:

Limits of Refrigerant

Lower Air Temperature

Defrost Effects

HEAT PUMP PERFORMANCE

COP and Input Power - ~ 1.6 .8 1.2 Input (kW) 4 0 110 120 130 Water Temp at Condenser(F) SandenGES 50F COP • SandenGES 30F Input SandenGES 67F Input

Climate Zone

Source: <u>ANSI/ASHRAE/IES Standard 90.1-2019 -- Energy Standard for Buildings</u> <u>Except Low-Rise Residential Buildings</u>

REFRIGERANTS | GWP OF SELECTED REFRIGERANTS (CARBON DIOXIDE EQUIVALENTS, CO₂e)

	Refrigerant			
	R-744 (CO ₂)	R-1234yf R-134a R		R-410A
Low Ambient Air Temp	-25 °F	35 °F ?	35 °F	-5 °F
Max Discharge H ₂ O Temp	190 °F	160 °F ?	160 °F	140 °F

4657

10900

Garage Air Temperatures

Z

Ecosim

Wireframes · Version 1.8

Website Coming Soon...

System COP

System COP

Advanced Water Heater Specification

Characterize standardized systems across Climates by Schematics and Equipment

Draft Version 8 - <u>https://neea.org/our-work/advanced-water-heating-specification</u>

	Minimum System Efficiency (SysCOP)		Other Requirements			
	Hot Climates (IECC Zones 1-2)	Mild Climates (IECC Zones 3-4)	Cold Climates (IECC Zones 5-6)	Extremely Cold Climates (IECC Zones 7-8)	Demand Response (CTA-2045- B)	M&V Points
Tier 1	2.25	2.0	1.5	1.25	Optional	Optional
Tier 2	3.0	2.5	2.0	1.5	Required*	Required
Tier 3	3.5	3.0	2.5	2.0	Required*	Required
Tier 4	3.75	3.5	3.0	2.75	Required*	Required
		*De	mand response rec	quirements are susp	pended through Ju	ly 1, 2022.

THANK YOU

I DESCRIPTION OF