

Davis

Allies for Efficiency

November 14, 2017

Who we are

Energy Trust is an independent nonprofit dedicated to helping 1.5 million utility customers invest in energy efficiency and clean, renewable power.

We provide:

- Information
- Technical services
- Engineering studies
- Cash incentives
- Contractor connections

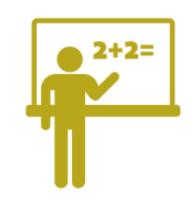
New Buildings Training & Education

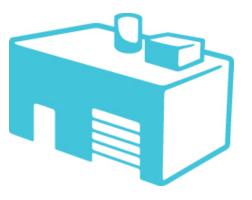
Allies for Efficiency (AFE)

- Case study presentations on high-performance design and construction projects
- Take place 3-5 times per year in Portland + regionally

High Performance Design Trainings

- Advanced training events for designers, architects and/or engineers
- Take place 2 3 times per year
- Content is focused on specific techniques or technologies


Building Energy Simulation Forum (BESF)


- Advanced energy modeling presentations
- Topics relevant to energy modelers / analysts, and engineers
- Take place every other month

Upcoming High Performance Design Trainings

December 7, 2017

Setting Measurable Building
Performance Targets for Deep Energy
Savings
Presented by Connor Jansen,
Seventhwave

Upcoming Building Energy Simulation Forum Trainings

BESF usually takes place the third Wednesday of every other month at the Ecotrust Building at noon.

December 13, 2017:

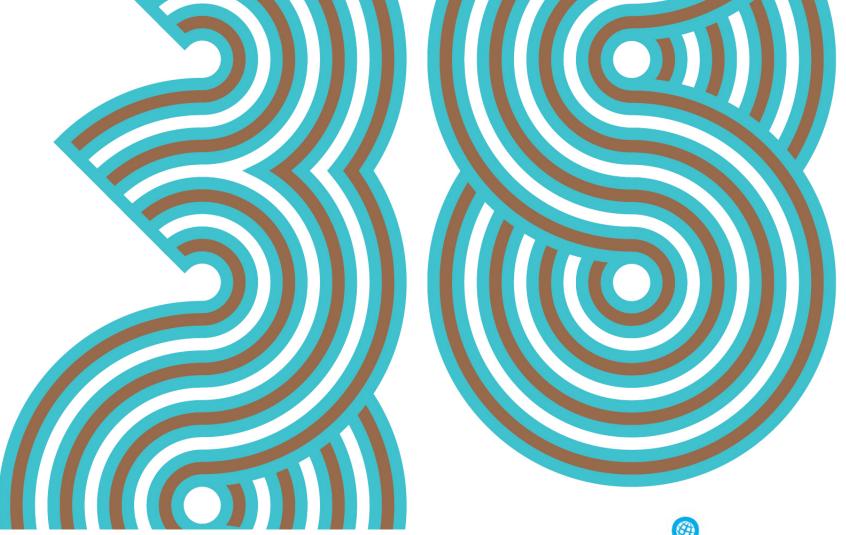
Energy Trust EDAPT Launch and a User's Perspective of OpenStudio Presented by Forest Tanier-Gesner, CLEAResult

Training & Education Webpage

energytrust.org/commercial/commercial-training-events/

Boost your knowledge with Energy Trust's continuing education opportunities and special training events. Trainings include real-world examples, case studies, and detailed technical information presented by experts from the fields of architecture, engineering, construction and development, as well as specialists in a variety of building types and market sectors. Attendees may be eligible for continuing education units, CEUs.

Find Upcoming Trainings and Events


Questions?

Have questions about upcoming training and education opportunities *or* about becoming an Energy Trust New Buildings Ally?

Contact Kirsten.Vogel@clearesult.com

Allies for Efficiency

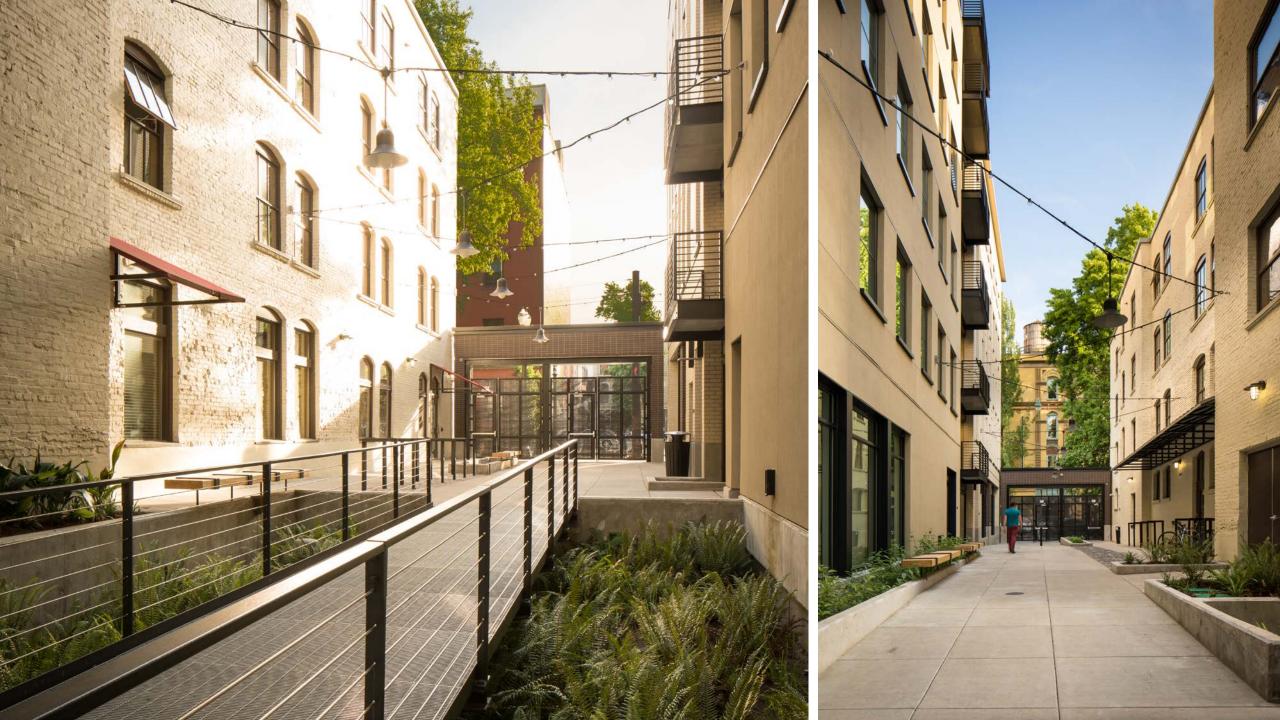
Designing for Efficiency in a Mixed-Use Space 11.14.2017

SITE HISTORY

FROM SAILER'S BOARDING HOUSES TO CREATIVE RESURGENCE

PARTNERSHIP

DIVERSE PUBLIC AND PRIVATE PARTNERS



DESIGN SOLUTION

UBER MIXED-USE IN AN HISTORIC DISTRICT

WHY TIMBER

TRADITIONAL CONSTRUCTION FOR CREATIVE USES

38 Davis First LEED v4 in Oregon!

A Huge Accomplishment!

As of November 2017, only 246 Certified LEEDv4 Projects in the World!

This team is the first to navigate such a complex mix of building program through a LEEDv4 certification: Mixed-use Office with Residential & Retail.

SUSTAINABILITY

STAKEHOLDERS SHARED PASSION FOR SUSTAINABILITY

DAVIS COL

Integrative Process

New Credit

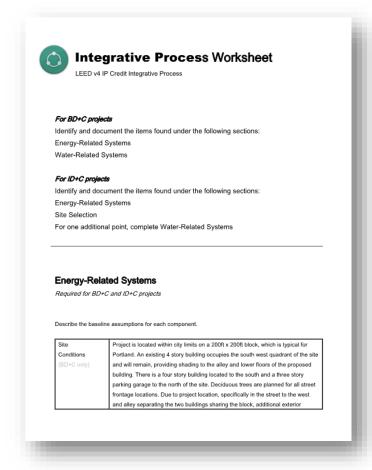
- Discovery Phase: Create opportunities to question assumptions, align team members around goals and foster ongoing engagement. Requires Analysis.
- Implementation Phase: LEED Credit Form Worksheet questions must be answered with narrative information."
- Documentation: Baseline summary, "shoebox" energy analysis and water supply/demand modeling, summary of evaluation of options, and inclusion of decisions in OPR & BOD.

Integrative Process

Energy-Related Systems

Site Conditions

Massing and Orientation


Envelope

Lighting Levels

Thermal Comfort Levels

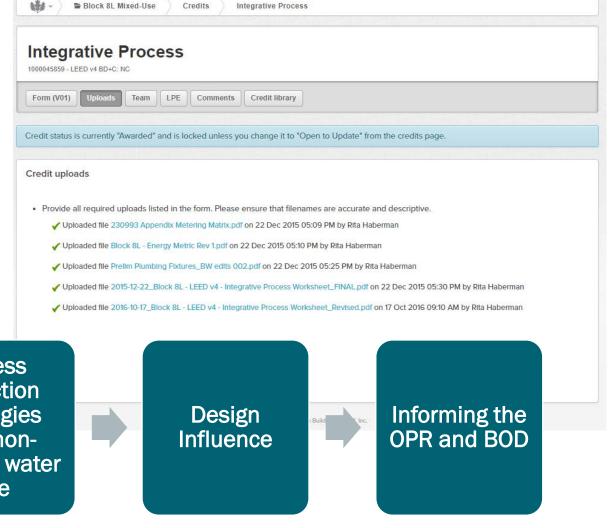
Plug and Process Loads

Programmatic and Operational Parameters

Baseline Assumptions

Assess 2 potential load reduction strategies

Design Influence



Informing the OPR and BOD

Integrative Process

Water - Related Systems

Indoor Water Demand
Outdoor Water Demand
Process Water
Supply Sources

Baseline Assumptions

Assess reduction strategies and non-potable water use

DAVIS COL

VENTILATION

- · Apartments: heat recovery in every apartment
- Offices: A VRF system cools & has a dedicated outdoor air system with heat recovery

RECYCLED & LOCALLY SOURCED BUILDING MATERIALS

- · Wood: wood frame construction, locally harvested & milled
- · Local wood cladding in lobby and for doors
- Reclaimed wood from old local bridge repurposed for benches in gallery of AMA's office space
- Column "grove" along Naito Parkway built from old historic buildings near the site
- Glass bottles found on site during construction is incorporated into Ankrom Moisan's office decor

GREEN ROOF

Reduces stormwater runoff and filters out contaminants

GREYWATER COLLECTION Water from residential sinks & showers reused to meet 100% of the demand for

the commercial toilets

14-PANEL SOLAR HOT WATER SYSTEM Projected to meet 65% of the domestic hot water load and offset 54% of the natural gas use

APARTMENT ENERGY EFFICIENCIES

- · Lighting design featuring LED lamps
- · Energy Star-rated appliances
- · Green Living Guide provides resources on sustainable living for residents

HIGH EFFICIENCY FACADE

INDOOR AIR QUALITY

- · Non-toxic finishes (paints, adhesives, sealants)
- · FloorScore certified flooring throughout
- · No/low VOC paints
- Building-wide green janitorial program

ANDSCAPING

Features drought-tolerant native, adaptive plantings

WATER FIXTURES

Efficient, Water Sense-certified building fixtures targeting 40% overall potable water reduction

Review Comments

DESIGN FINAL REVIEW

The additional documentation demonstrates compliance.

24 Oct 2016 9:54 AM

DESIGN PRELIM REVIEW

The LEED Form states that the project team has identified and executed synergistic opportunities for high performance outcomes across different disciplines and building systems. The analyses informed the project's Owner's Project Requirements (OPR), Basis of Design (BOD), Design Documents, and Construction Documents for Energy-Related Systems (programmatic and operational parameters, site conditions, massing and orientation, basic envelope attributes, lighting levels, thermal comfort ranges, plug and process load needs) and Water-Related Systems (indoor water demand, outdoor water demand, process water demand, and supply sources). However, to demonstrate compliance, the following must be addressed.

29 Jun 2016 3:18 PM

TECHNICAL ADVICE

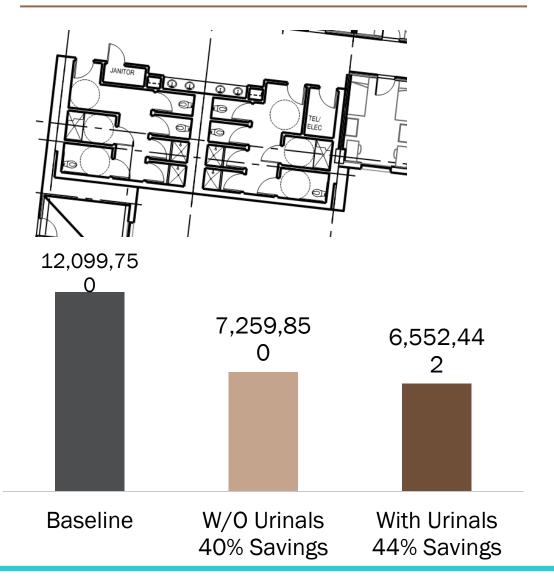
1. Provide a revised worksheet describing at least two potential load reduction strategies that were assessed for site conditions (shading, exterior lighting, hardscape, landscaping, and adjacent site conditions) through simple box energy modeling before the completion of schematic design.

Water Efficiency (WE)

What's new?

New Prerequisites & Credits
WEp Outdoor Water Use
WEp Bldg-Level Water Metering
WEc Cooling Tower Water Use
WEc Water Metering

New Concepts


- EPA WaterSense
- Outdoor Water Use Calculator
- Process Water & Equipment

DAVIS COL

WEc, Indoor Water Use Reduction Efficiency

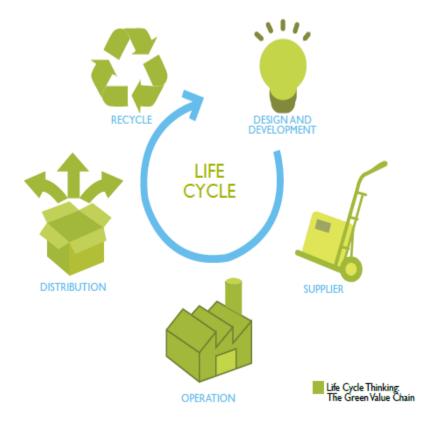
Recommended Flush/Flow

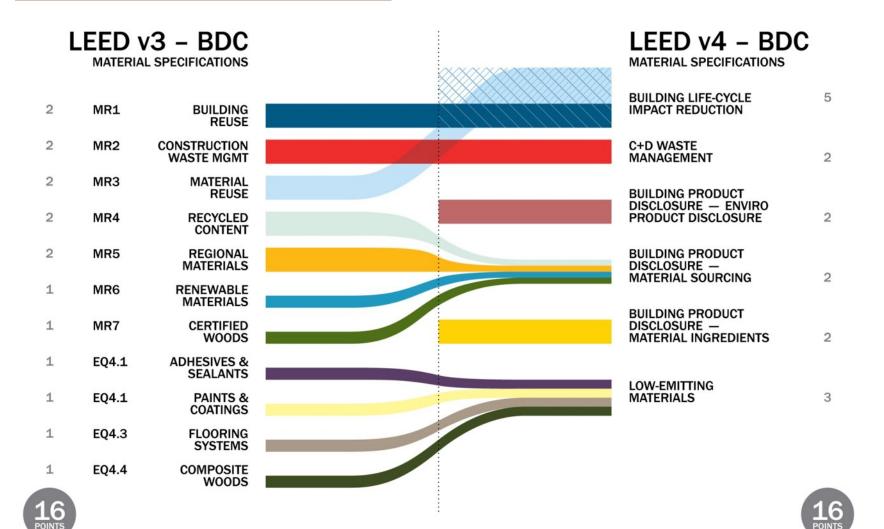
Water Closets: 1.28 GPF

Urinals: .125 GPF

Lavatory Faucets: 1 GPM

Showers: 1.5 GPM


Materials & Resources (MR)


What's new?

New Concepts

- Environmental Product Declaration (EPD)
- Life Cycle Assessment (LCA)
- Corporate Sustainability Report (CSR)
- Extended Producer Responsibility
- Health Product Declaration (HPD)

Material Specification

DAVIS ONL

Indoor Environmental Quality (EQ)

What's new?

New Credit

Acoustic Performance

New Concepts

- Emissions Evaluation
- Ceilings, walls, and insulation emissions requirements
- Lighting Quality
- Quality Views

DAVIS COL

EQc Acoustic Performance

New LEED v4 Credit

HVAC Background Noise – per 2011 ASHRAE Handbook

Sound Isolation – STC ratings for adjacent spaces

Adjacency Comb	inations	STC Rating
Residence	Hallway	50
Mech equip	Any Occupied Area	60

Reverberation Time Requirements

< 0.6 T60 (sec), at 500 Hz, and 2000 Hz

Sound Reinforcement and Masking Systems – N/A?

- For all large conference rooms and auditoriums seating more than 50 persons, evaluate whether sound reinforcement and AV playback capabilities are needed.
- Masking systems design levels must not exceed 48 dBA

8	0	0	3		Water	Efficiency 11 Points Po	ossible
Y	444	1444	556	d I	Prereq 1	Outdoor Water Use Reduction, 30%	n/a
Υ	255	252	999	d i	Prereq 2	Indoor Water Use Reduction, 20%	n/a
Y	200			d i	Prereq 3	Building-Level Water Metering	n/a
1			1	d (Credit 1	Outdoor Water Use Reduction, Option 2 Reduced Irrigation, 59	1 or 2
6				d (Credit 2	Indoor Water Use Reduction- 58.64% reduction with alt water	1-6
			2	d (Credit 3	Cooling Tower Water Use	1 or 2
1				d (Credit 4	Water Metering	1

Light Pollution Reduction

17	0	0	16	Energy	/ & Atmosphere	33	Points Possible
Υ	i di	100	ĕ\$\$	c Prereq1	Fundamental Commissioning and Verification		n/a
Υ	220		227	d Prereq 2	Minimum Energy Performance		n/a
Υ	220		222	d Prereq 3	Building-Level Energy Metering		n/a
γ	200		222	d Prereq 4	Fundamental Refrigerant Management		n/a
3			3	C Credit 1	Enhanced Commissioning		2-6
11			7	d Credit 2	Optimize Energy Performance , 26.2%		1-18
			1	d Credit 3	Advanced Energy Metering		1
			2	d Credit 4	Demand Response		1 or 2
1			2	d Credit S	Renewable Energy Production - 2.88%		1-3
			1	d Credit 6	Enhanced Refrigerant Management		1
2				Credit 7	Green Power and Carbon Offsets		1 or 2

Yes	?Y	?N	No			
3	0	0	5	Mat	erials & Resources 13	Points Possible
Υ	gridad	900	1000	d Prereq 1	Storage and Collection of Recyclables	n/a
Υ				c Prereq 2	Construction and Demolition Waste Mgt. Planning	n/a
			5	d Credit 1	Building Life-Cycle Impact Reduction	2-5
1			1	C Credit 2	Bidg Products: Env'l Product Declarations	1-2
			2	C Credit 3	Bldg Products: Sourcing of Raw Materials	1-2
			2	C Credit 4	Bldg Products: Material Ingredients	1-2
2				c Credit 5	Construction and Demolition Waste Mgt.	1 or 2

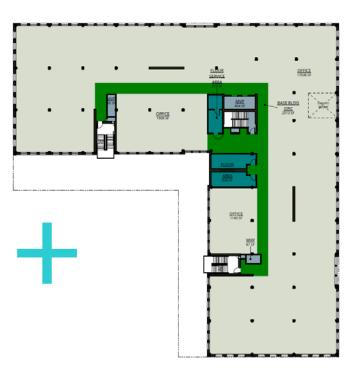
6	0	0	11	Indoor	r Environmental Quality 16	Points Possible
γ			222	d Prereq1	Minimum IAQ Performance, Option 1 ASHRAE 2010	n/a
Υ				d Prereq 2	Environmental Tobacco Smoke Control	n/a
2				d Prereq 3	Enhanced Indoor Air Quality Strategies	1 or 2
1			3	C Credit 2	Low-Emitting Materials	1-3
1				C Credit 3	Construction Indoor Air Quality Management Plan	1
			2	C Credit 4	Indoor Air Quality Assessment	1 or 2
			1	d Credit 5	Thermal Comfort	1
1			1	d Credit 6	Interior Lighting	1 or 2
			3	d Credit 7	Daylight	1-3
1				d Credit 8	Quality Views	1
			1	d Credit 9	Acoustic Performance	1

1

6	0	0	0	Innovation & Design Process	6 Points Possible
1				c Credit 1.1 Innovation: Green Building Education	1
1				Credit 1.2 Innovation: Salmon Safe Certified	1
1				d Credit 1.3 Exemplary Performance: LTc5 Access to Qual	ity Transit 1
1				d Credit 1.4 Exemplary Performance: LTc3 High Priority Si	te - Option 2 1
1				c Credit 1.5 Pilot Credit: Social Equity Project Team	1
1				c Credit 2 LEED™ Accredited Professional	1

2	0	0	4	Regional Priority	4 Points Possible
	972	209		◆ Project Zip Code	
			1	d Credit 1.1 Regional Credit: SSc Rainwater Manageme	ent 3
1				d Credit 1.2 Regional Credit: WEc Indoor Water Use Re	eduction 4 1
			1	d Credit 1.3 Regional Credit: EAc Demand Response 1	1
			1	d Credit 1.4 Regional Credit: EAc Renewable Energy Pr	oduction 2 1
1				d Credit 1.5 Regional Credit: MRc Building Products: El	PDs 1 1
			1	d Credit 1.6 Regional Credit: MRc Bldg Products: Source	cing 1 1

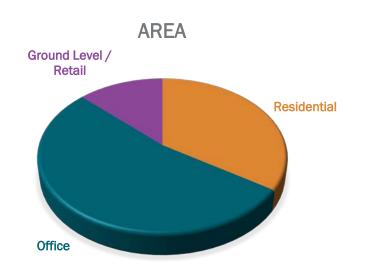
Certified (Gold)

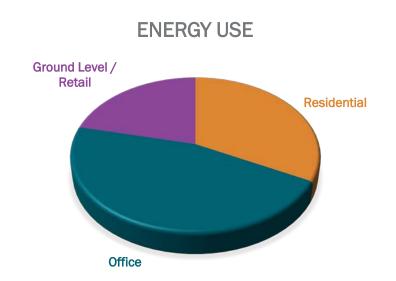

CERTIFIED: 40-49, SILVER: 50-59, GOLD: 60-79, PLATINUM: 80+

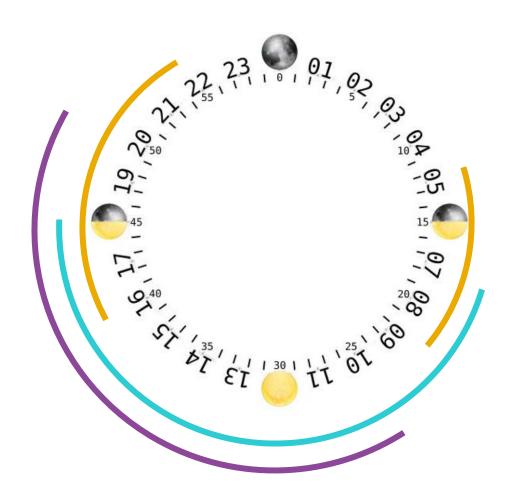
38 Davis – Building Program

A truly "Mixed" program

What is 38 Davis

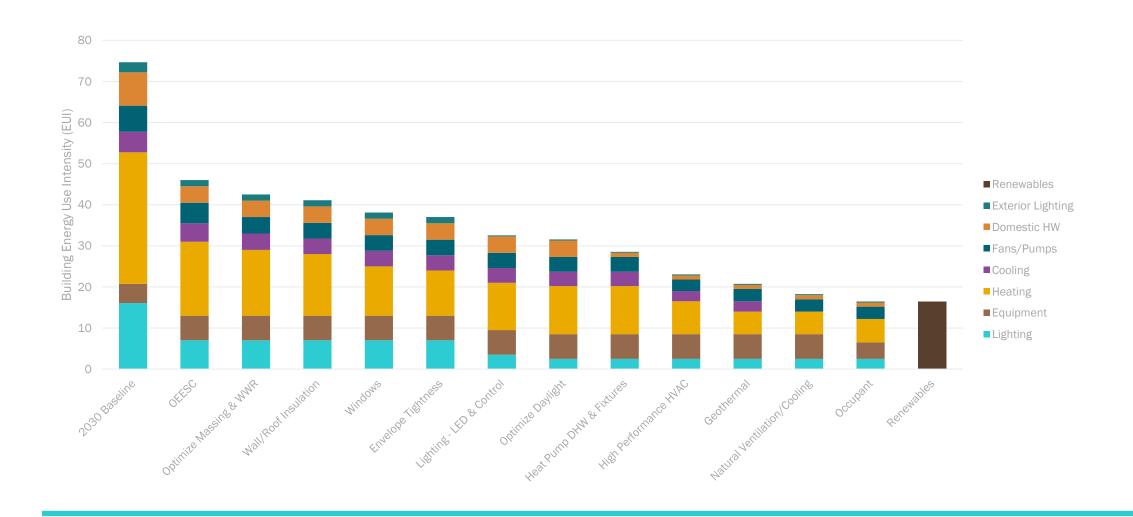




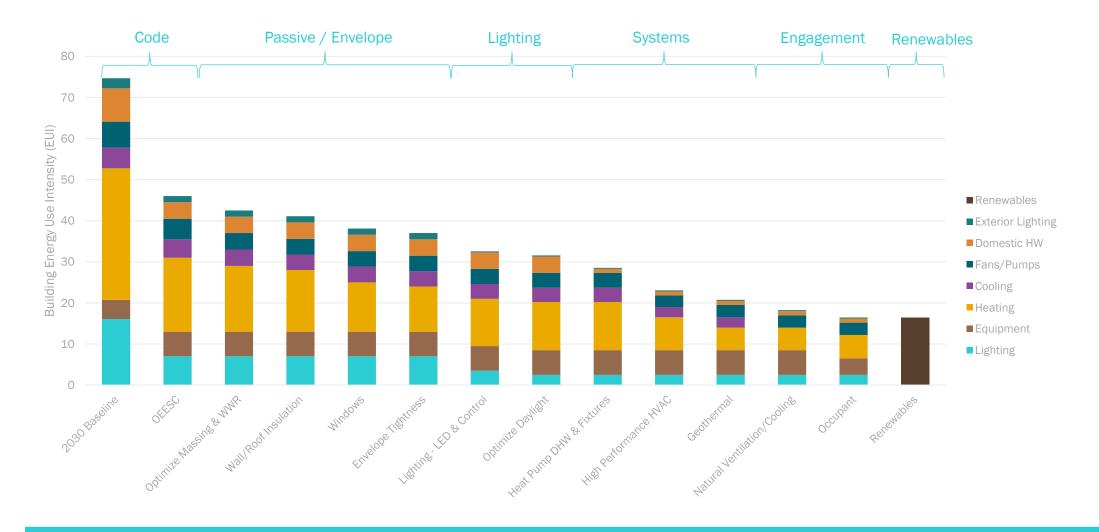

DAVIS COL

Where Does 38 Davis Use Energy

When Does 38 Davis Use Energy

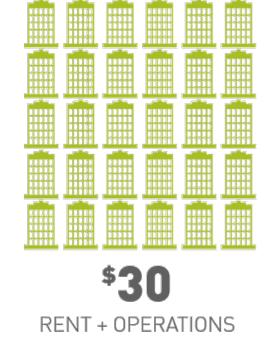


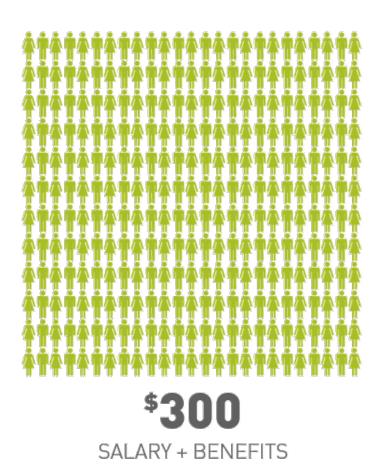
Residential
Office
Ground Level / Retail


Mixed Use & Energy

More Measure Needed to get Results

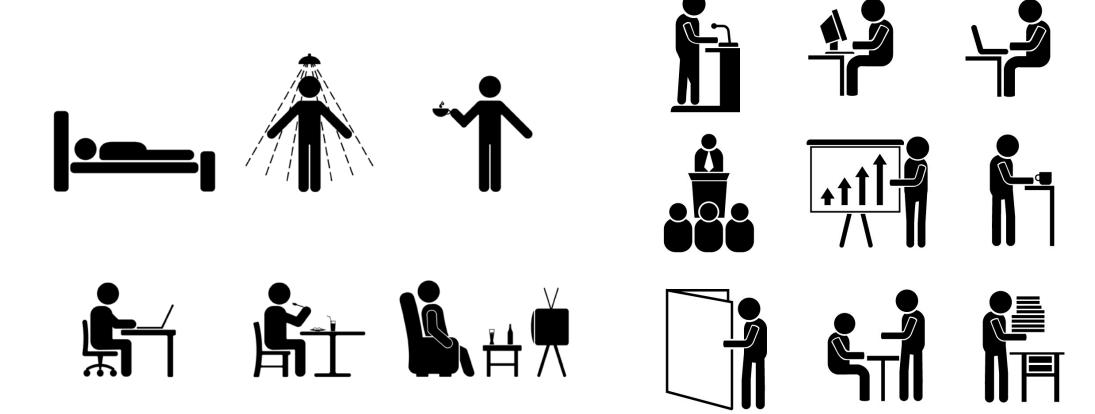
Path to Performance




Path to Performance

Rethinking Metrics

UTILITIES


AVIS ODL

Energy & Buildings

"Buildings don't use energy, people do."

– Kirk Davis, Glumac

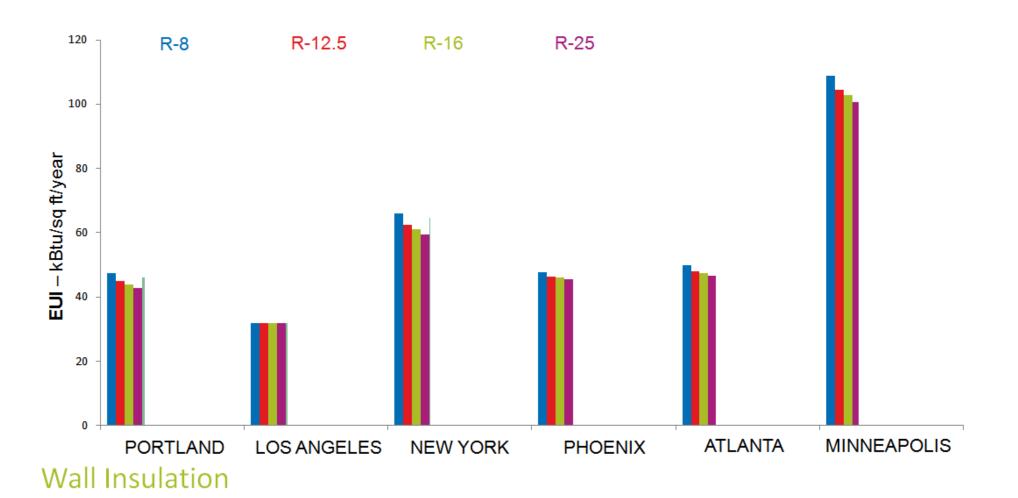
Understanding Occupancy

Building Envelope

The Devil is in the Details

DAVIS COL

Thermal Performance Metric

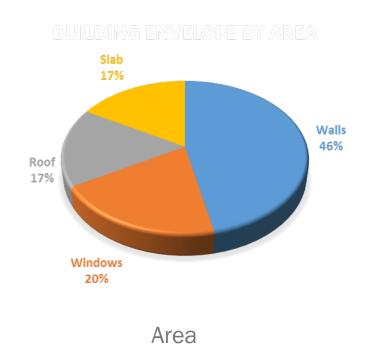

$$U - Value = \frac{Btu/h}{ft^2 \times {}^{\circ}F}$$

Oregon Specialty Energy Efficiency Code

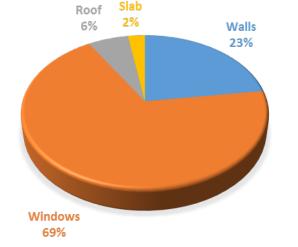
TABLE 502.1.2 BUILDING ENVELOPE REQUIREMENTS OPAQUE ELEMENT, MAXIMUM *U*-FACTORS

	5 AND MARINE 4					
CLIMATE ZONE	All other	Group R				
Roofs						
Insulation entirely above deck	U-0.048	U-0.048				
Metal buildings	U-0.055	U-0.055				
Attic and other	U-0.027	U-0.027				
Walls, Above Grade						
Mass ^b	$U\text{-}0.150^{\circ}$	U-0.090				
Metal building	U-0.069	U-0.069				
Metal framed	U-0.064	U-0.064				
Wood framed and other	U-0.064	U-0.051				
Walls, Below Grade						
Below-grade wall ^a	C-0.119	C-0.119				
Floors						
Mass	U-0.074	U-0.064				
Joist/Framing	U-0.033	U-0.033				
Slab-on-Grade Floors						
Unheated slabs	F-0.730	F-0.540				
Heated slabs ^a	F-0.860	F-0.860				

The Point of Diminishing Return



The Point of Diminishing Return



DAVIS COL

U-Values Translated

Heat Loss

Different Components of U-Values

 U_T = Total effective

 U_0 = Clear field thermal transmittance

 Ψ = Heat flow from linear thermal bridge

X = Heat flow from point thermal bridge

$$U_T = \frac{\Psi + \chi}{Area\ of\ Assembly} + U_o$$

Different Components of U-Values

 U_T = Total effective

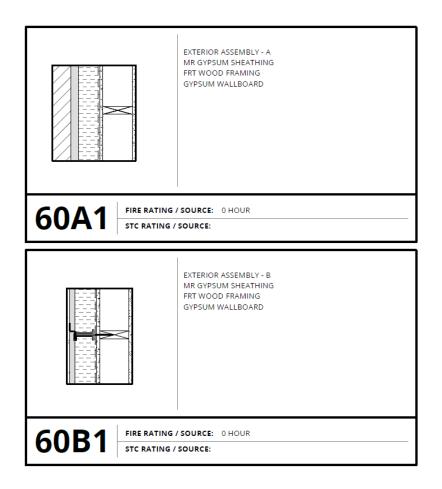
 U_0 = Clear field thermal transmittance

 Ψ = Heat flow from linear thermal bridge

X = Heat flow from point thermal bridge

$$U_T = \frac{\Psi + \chi}{Area\ of\ Assembly} + U_o$$

DAVIS ON


Glazing Transitions

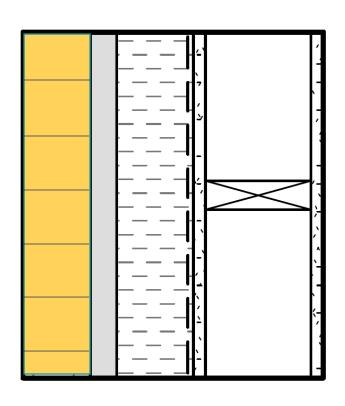
	Doufours Co		Description and Everynles	Linear Transmittance		
	Performance Ca	ategory	Description and Examples	<u>Btu</u> hr ft F	<u>W</u> m K	
GLAZING TRANSITIONS		Efficient	Well aligned glazing without conductive bypasses Examples: wall insulation is aligned with the glazing thermal break. Flashing does not bypass the thermal break.	0.12	0.2	
GLAZING TF		Regular	Misaligned glazing and minor conductive bypasses Examples: wall insulation is not continuous to thermal break and framing bypasses the thermal insulation at glazing interface.	0.20	0.35	
		Poor	Un-insulated and conductive bypasses Examples: metal closures connected to structural framing. Un-insulated concrete opening (wall insulation ends at edge of opening).	0.29	0.5	

Image Courtesy of Morrison Hershfield

AVIS ONL

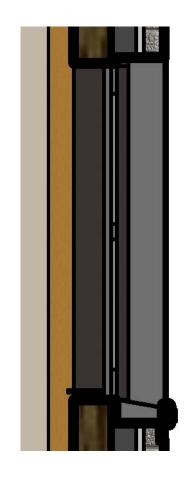
Typical Exterior Wall Assemblies

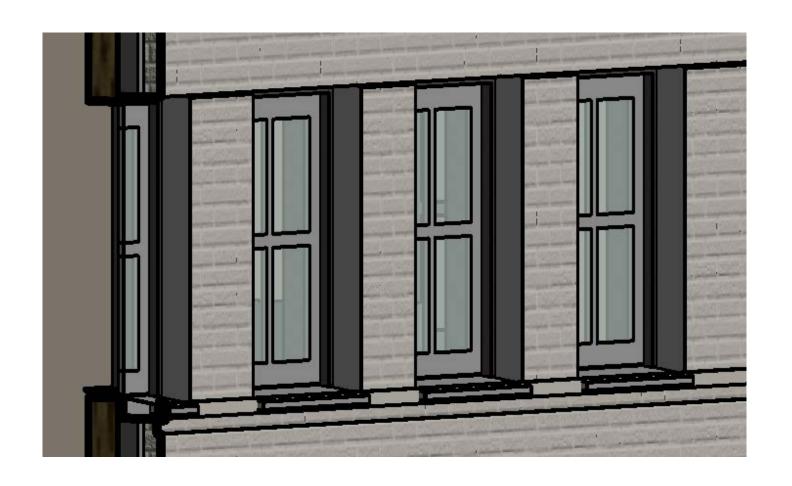
- A. BRICK VENEER
 1 1/4" MIN AIR SPACE
 4" MINERAL FIBERBOARD INSULATION
 FA-WRB
- B. STUCCO FINISH COAT


 1/2" CEMENT BACKER BOARD

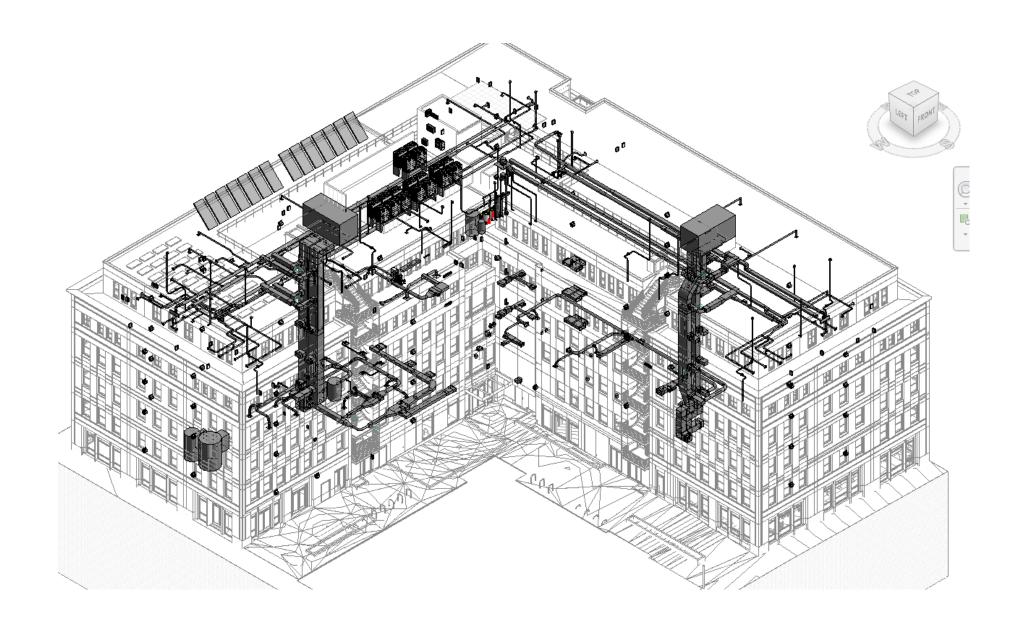
 1" AIR SPACE
 FIBERGLASS FURRING CONNECTORS

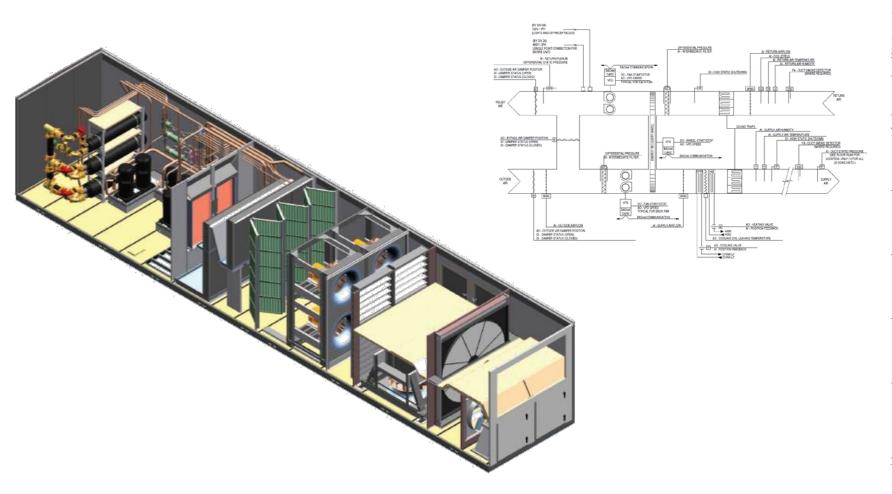
 4" MINERAL FIBERBOARD INSULATION
 FA-WRB

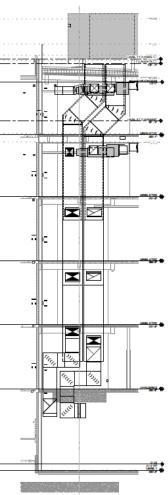

DAVIS COL


Don't Underestimate BRICK

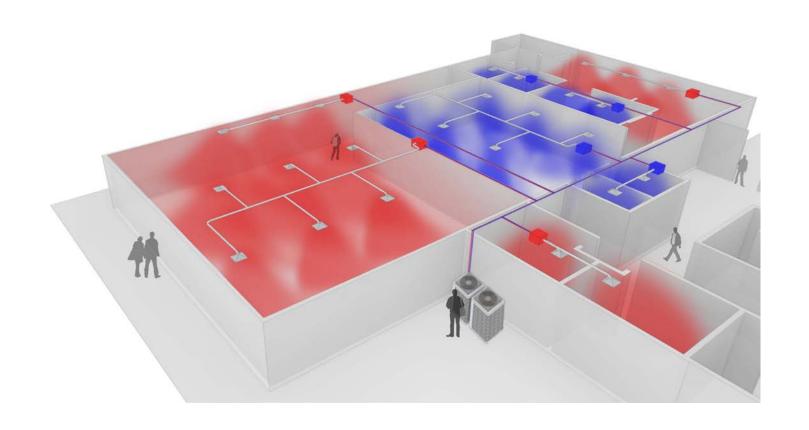

```
4 IN. BRICK w = (130 \text{ lb/ft3}) \times [(0.75)(3.63 \text{ in.}) / 12 \text{in./ft}] = 29.5 \text{ lb/ft2}
(>75% SOLID)
                           c = 0.20 Btu/(lb-°F)
                HC = 29.5 \times 0.20 = 5.9 \text{ Btu/(ft2-°F)}
4 IN. STUD w = 45 \text{ lb/ft3} \times [(3.5 \text{ in.} \times 1.5 \text{ in.}) / (144 \text{ in.2/ft2})] \times (12 \text{ in./ft} / 16 \text{ in.})
                = 1.23 lb/ft2
                c = 0.30 Btu/(lb-°F)
                HC = 1.23 \times 0.30 = 0.4 \text{ Btu/(ft2-°F)}
(2) 1/2 IN. w = 50 lb/ft3 x [(2)(0.5 in.) / 12 in./ft] = 4.2 lb/ft2
GYPSUM BOARD c = 0.26 \text{ Btu/(lb-°F)}
                HC = 4.2 \times 0.26 = 1.1 \text{ Btu/(ft2-°F)}
INSULATION
                            NEGLIGIBLE
                           TOTAL HC = 5.9 + 0.4 + 1.1 = 7.4 \text{ Btu/(ft2°F)}
```


Don't Underestimate Setbacks



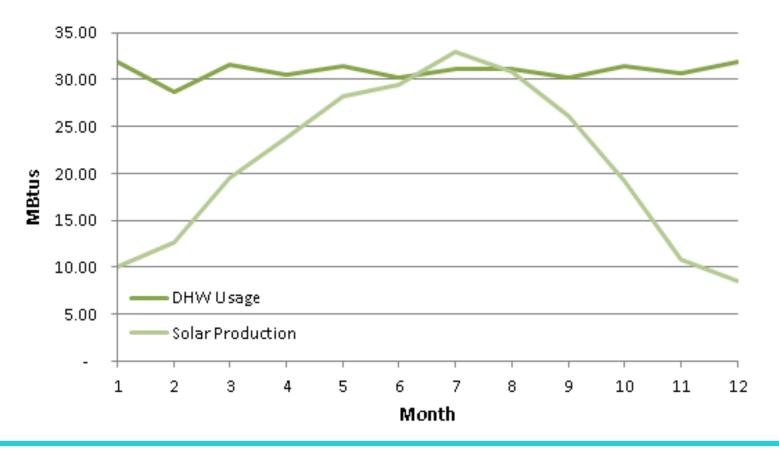

Systems

DOAS / VRF / Mixed Mode Ventilation / Solar Hot Water


Dedicated Outside Air Systems (DOAS)

DAVIS ODL

Variable Refrigerant Volume (VRV)


Ventilation & Cooling/Heating

Renewables

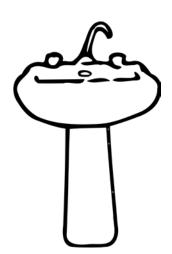
DHW Demand vs. Solar Production

Water

Just as Important as Energy

DAVIS COL

What is Grey Water?


	NSF 350 STANDARD				
	MAX	<u>AVG</u>			
Turbidity	5	2			
TSS	30	10			
CBOD	25	10			
E. coli	200	2.2			
Odor	Non-Offensive				
рН	6.0 – 9.0				

What Fixtures CAN go to Grey Water?

- Showers & Tubs Washing Machines
- Lavatories

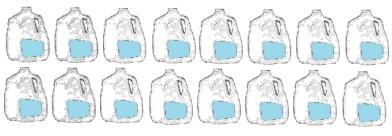
In addition, condensate & rain water CAN go to a grey water system

AVIS ODL

What Fixtures were used

Showers and Tubs only

- LEED estimates:
 - 1 shower/person/day
 - 8 min shower average
 - 1.5gpm low flow fixture
 - Water Use:
 - 12 gallons/person/day
 - 4,380 gallons/person/yr
- Unused grey water must be discarded after 24 hrs.
- Creating more grey water than you need is a waste of energy



Block 8L Estimated Water Savings

Usage Calculations

- Estimated Annual Grey Water Created:
 - 368,042 gal/yr
- Estimated Annual Grey Water Used:
 - 240,762 gal/yr
- Total Estimated Water Savings Annually:
 - 240,762 gal/yr

That's a lot of water!

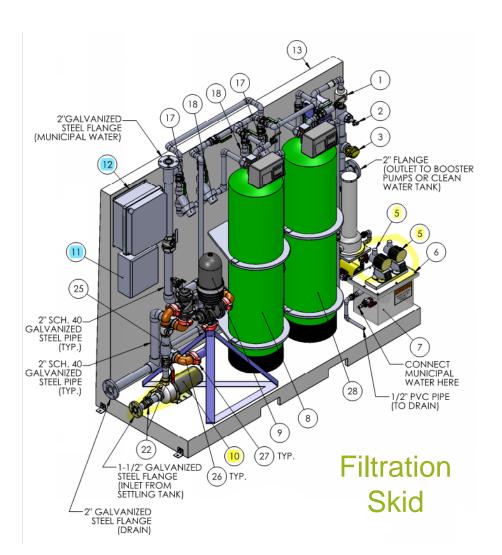
Annual Savings \$1,268

Portland, OR water Rates: \$3.940/748 gallons

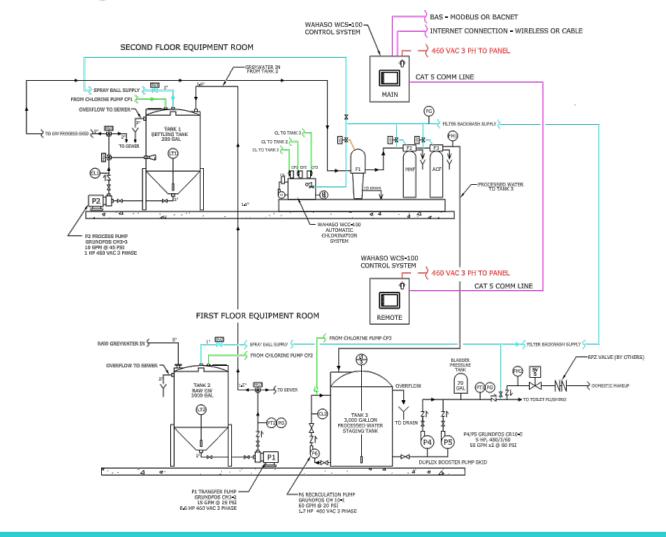
DAVIS COL

How Does it Work?

Settling Tank


- First chlorine dosage
- Solids precipitate out and are flushed into sanitary syste

Filtration


- 80 micron disk filter
- 10 micron multi-media filter
- 1 micron carbon filter

Sterilization

- Chlorine injection (max 0.5 ppm)
 - safe for landscape use

Block 8L Piping Schematic

Incentives

Keep a Constant eye out for Opportunity

Incentives

THANK YOU!

