

The Future of Healthy Efficient Buildings

VENTACITYSYSTEMS Making Buildings Healthy - Efficient - Smarter

Chapter 1 High Performance Buildings

What is a "High Performance" Building?

May 2020 I © Ventacity Systems, Inc.

High Performance Buildings

- Energy efficient
- Durable
- Resilient
- Healthy
- Comfortable

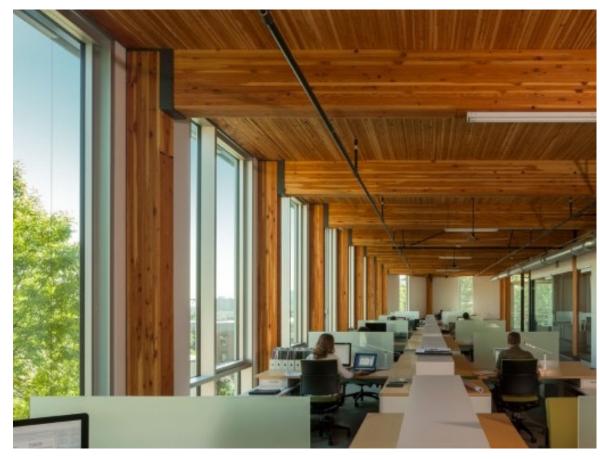
Energy Efficient

- Highly insulated
- Superior verified air-sealing
- Thermal bridges eliminated
- Low u-value windows
- Efficient heating & AC systems
- Heat Recovery
 Ventilation (HRV)

Durable

- Durable longlasting materials
- High integrity water barrier
- Verified air-sealing
- Superior
 workmanship
- Quality control

- Designed to withstand flooding
- Drought tolerant
- Buffer temperature extremes in power outage
- Operable windows
- Daylighting


Healthy

- Exceptional indoor air quality
- Source control of pollutants
- No/low VOC materials
- Daylighting
- Humidity control
- Noise reduction
- High water quality

Comfortable

- Exceptional indoor air quality
- Temperature zones and control
- Window surface temperature
- Daylighting
- Humidity control
- Noise reduction
- Aesthetic

High Performance Rating Systems

- Passive House
- LEED
- Living Building Challenge
- Well Building
 Standard

May 2020 I © Ventacity Systems, Inc.

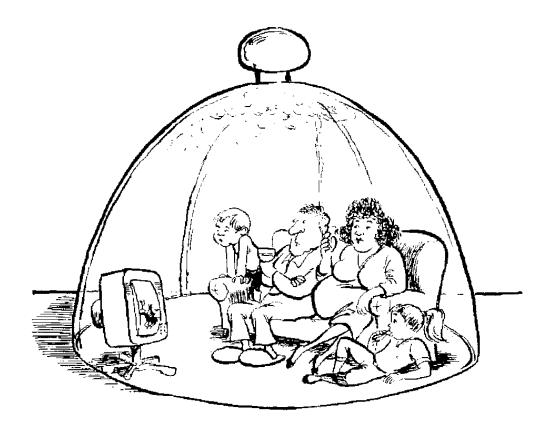
Side Benefits of High Performance Buildings

- Happy occupants
- Higher productivity
- Higher rent and/or lower vacancy rate
- Increased building value
- Hedged energy costs

May 2020 | © Ventacity Systems, Inc.

Chapter 2 Why Ventilation Matters

Why Ventilate? Air is Life


For breath is life, and if you breathe well you will live long on earth. ~Sanskrit Proverb

May 2020 I © Ventacity Systems, Inc.

Chapter 2: Why Ventilation Matters:

Why Ventilate? Better Indoor Environment

- Air Humidity
- CO₂ Concentration
- VOC's
- Smells
- Allergens
- Temperature
- Viruses/Germs!

Why Ventilate? Healthier Conditions

- Lawrence Berkeley National Laboratory study of California classrooms
- Increasing ventilation from 8 CFM/student to 15 CFM/student
- Reduced sickness related absenteeism by almost 4%

Why Ventilate? Lower Risk of Virus Spread

Indoor Air 2003; 13: 237–245 www.blackwellpublishing.com/ina Printed in Denmark. All rights reserved Copyright © Black well Munksgaard 2003 INDOOR AIR ISSN 0905-6947

Risk of indoor airborne infection transmission estimated from carbon dioxide concentration

Abstract The Wells–Riley equation, which is used to model the risk of indoor airborne transmission of infectious diseases such as tuberculosis, is sometimes problematic because it assumes steady-state conditions and requires measurement of outdoor air supply rates, which are frequently difficult to measure and often vary with time. We derive an alternative equation that avoids these problems by determining the fraction of inhaled air that has been exhaled previously by someone in the building (rebreathed fraction) using CO₂ concentration as a marker for exhaled-breath exposure. We also derive a non-steady-state version of the Wells–Riley equation which is especially useful in poorly ventilated environments when outdoor air supply rates can be assumed constant. Finally, we derive the relationship between the average number of secondary cases infected by each primary case in a building and exposure to exhaled breath and demonstrate that there is likely to be an achievable critical rebreathed fraction of indoor air below which airborne propagation of common respiratory infections and influenza will not occur.

S. N. Rudnick¹, D. K. Milton^{1,2}

¹Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA, ²Department of Medicine, The Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA

Key words: Carbon dioxide; Infectious disease risk modeling; Wells-Riley equation; Basic reproductive number; Communicable disease control; Respiratory tract infections; Indoor air pollution.

Donald K. Milton

Associate Professor of Occupational and Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115-6021, USA Tel.: 617 432 3324 Fax: 617 432 3441

Why Ventilate? Lower Risk of Virus Spread

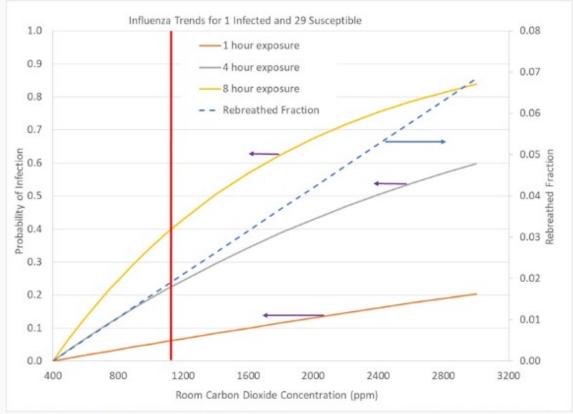


Figure 6 Probability of infection in a room with 1 infected person and 29 susceptible persons.

Evidence That Better Ventilation Provides Lower Risk For Viruses

Rethinking IAQ: Critical Advice from Harvard Healthy Buildings Guru

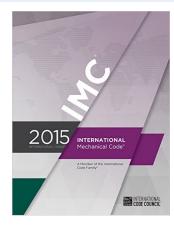
'Healthy Buildings' author Joe Allen offers insight about what the future may hold for building operations and maintenance.

GAZETTE: Can you say more about how to specifically make a building a better barrier against the spread of coronavirus? Specifically hospitals, nursing homes, and grocery stores that are on the front lines right now.

ALLEN: You want to try to get to 100 percent outdoor air being brought into your system with no recirculated air. If you don't have a central air system, you want to open up your windows as much as you can. You want to make sure that if you are recirculating air, that it's being filtered through upgraded filters. Typically you have a MERV 8 — MERV is a rating system for filters — and those capture less than 50 percent, it could be down to 20 percent of small particles. Filters like a MERV 13 get you closer to 80 or 90 percent, or HEPA filters capture 99.97 percent of particles, so upgraded filters can be effective.

May 2020 | © Ventacity Systems, Inc.

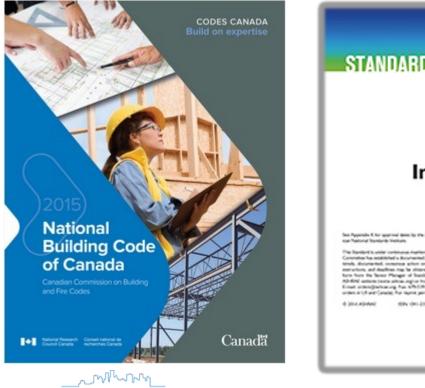
Why Ventilate? Better Performance


- Harvard/Syracuse study of cognitive function in office workers:
- Green days 61% better
- Green+ days 101% better
- Most effected categories were *crisis response*, *information usage*, and *strategy*

Ventilation for Acceptable

Indoor Air Quality

STANDARI


- International Mechanical Code (IMC)
- ASHRAE 62.1
- Passive House
- National Building Code of Canada

How much Ventilation is needed? 2015 National Building Code of Canada

[T]he rates at which outdoor air is supplied in *buildings* by ventilation systems shall be not less than the rates required by *ANSI/ASHRAE 62, "Ventilation for Acceptable Indoor Air Quality"*

May 2020 | © Ventacity Systems, Inc.

VENTACITYSYSTEM

- National Building Code of Canada
- References ASHRAE62.1 for flow rates

How Much Ventilation is Needed? ASHRAE Standard 62.1 2016

		People Outdoor		mtdoor	Area Outdoor			Default Values				
		People C Air Rate <i>R_p</i>		audoor	Area O Air Rat R _a	e e		Occupant Density (see Note 4)		ned Outdoor te (see Note 5)	-	
	Occupancy Catego	ny.	cfm/ person	L/s- person	cfm/ft ²	L/s·m ²	Notes	#/1000 ft ² or #/100 m ²	cfm/ person	L/s- person	Air Class	
	Correctional Facili	ties	-	-					-			
	Cell		5	2.5	0.12	0.6		25	10	4.9	2	
	Dayroom		5	2.5	0.06	0.3		30	7	3.5	1	
	Guard stations		5	2.5	0.06	0.3		15	9	4.5	1	
	Booking/waiting		7.5	3.8	0.06	0.3		50	9	4.4	2	
	Educational Facilit	iee.	110	210	0.00	010		50	· ·			
	Daycare (through ag		10	5	0.18	0.9		25	17	8.6	2	
	Daycare sickroom	c 4)	10	5	0.18	0.9		25	17	8.6	3	
	Classrooms (ages 5-	8)	10	5	0.13	0.6		25	15	7.4	1	
	Classrooms (age 9 p		10	5	0.12	0.6		35	13	6.7	1	
		ius)	7.5	3.8	0.12			35 65	8	4.3	1	
	Lecture classroom			3.8	0.06	0.3	н	65	8	4.3	1	
	Lecture hall (fixed s	cats)	7.5				н					
	Art classroom		10	5	0.18	0.9		20	19	9.5	2	
	Science laboratories		10	5	0.18	0.9		25	17	8.6	2	
	University/college laboratories		10	5	0.18	0.9		25	17	8.6	2	
	Wood/metal shop		10	5	0.18	0.9		20	19	9.5	2	
_	Computer lab	_	10	5	0.12	0.6	_	25	15	7.4	1	
imum Exhaust Rates										7.4	1	
	Exhaust Rate.	Exhaust	Rate.		Exhaust	Rate.	Exhaus	t Rate, Air	-	5.9	1	
tegory	cfm/unit	cfm/ft2	,	Notes	L/s-unit	,	L/s·m ²	Class		4.1	1	
	-	0.50		В	-		-	1				
	-	0.70			-		3.5	2		5.1	2	
ms	-	1.50		А	-		7.5	2	1.1	4.7	2	
	-	0.50			-		2.5	2	-	4.7	2	
salons	-	0.60			-		3.0	2	1.1	7.0	2	
	-	1.00			-		5.0	2	1			
rooms	_	0.50			-		2.5	2		s and ETS-free areas		
	-	1.00			-		5.0	2	- 1	an air temperature of		
ence laboratories	-	1.00			-		5.0	2	. 1			
trash rooms, recycling	-	1.00			-		5.0	3		ary that is most simil	ar in terms	
-	-	0.30			-		1.5	2	1.1			
mercial	-	0.70			-		3.5	2				
or athletic, industrial, facilities	-	0.50			-		2.5	2	ь	en the pool is occupi	ed. Deck a	
ker rooms	-	0.25			_		1.25	2		shall be provided.		
ns	20/50			G,I	10/25			2		xom.		
ths	_	-		F	-		-	4				
\$	-	0.75		с	-		3.7	2	11			
al areas)	-	0.90			-		4.5	2				
achinery rooms	_	_		F	_		-	3	111		-	
hens	50/100	-		G	25/50		_	2	11			
storage rooms	-	1.00		F	_		5.0	3	1.1			
chemical	-	1.50		F	_		7.5	4				
	25/50	_		E, H	12.5/25		_	2	. 1			
e.	50/70			D, H	25/35			2				
e		-		5,11	20130		2.5	2	. 1			
e p/classrooms	-	0.50										

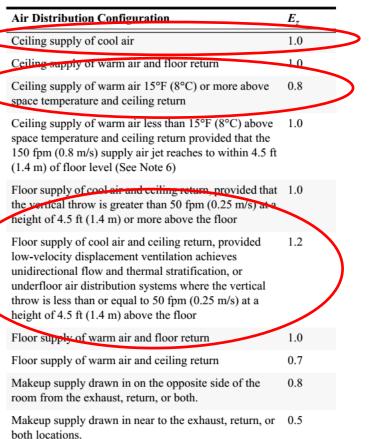
- Table 6.2.2.1 • Minimum Ventilation Rates in **Breathing Zone**
- Table 6.5 • Minimum Exhaust Rates

I Rate is per sh

ASHRAE Standard 62.1 – Table 6.2.2.1

TABLE 6.2.2.1 Minimum Vo (Table 6.2.2.1 shall be used)				
	People Outdoor		Area Outdoor Air Rate			Default Values Occupant Density Combined Outdoor			-
	Air Rate <i>R_p</i>		Air Kat R_a	e		Occupant Density (see Note 4)		(see Note 5)	
Occupancy Category	cfm/ person	L/s· person	cfm/ft ²	L/s·m ²	Notes	#/1000 ft ² or #/100 m ²	cfm/ person	L/s∙ person	Air Class
Correctional Facilities								/	
Cell	5	2.5	0.12	0.6	Y	25	10	4.9	2
Dayroom	5	2.5	0.06	0.3	- 0	30	7	3.5	1
Guard stations	5	2.5	0.06	0.3	X	15	9	4.5	1
Booking/waiting	7.5	3.8	0.06	0.3		50	9	4.4	2
Educational Facilities						\smile			
Daycare (through age 4)	10	5	0.18	0.9		25	17	8.6	2
Daycare sickroom	10	5	0.18	0.9		25	17	8.6	3
Classrooms (ages 5-8)	10	5	0.12	0.6		25	15	7.4	1
Classrooms (age 9 plus)	10	5	0.12	0.6		35	13	6.7	1
Lecture classroom	7.5	3.8	0.06	0.3	Н	65	8	4.3	1
Lecture hall (fixed seats)	7.5	3.8	0.06	0.3	Н	150	8	4.0	1

- People Outdoor Air Rate
- Area Outdoor Air Rate
- Default Occupancy
- Air Class


 $V_{bz} = (R_p \times P_z) + (R_a \times A_z)$

Zone Airflow = (People Rate x Number People) + (Area Rate x Area)

May 2020 I © Ventacity Systems, Inc.

TABLE 6.2.2.2 Zone Air Distribution Effectiveness

Voz = Vbz/0.8 = 1.25Vbz

 $V_{oz} = V_{bz}/E_z$

Outdoor _	Zone Airflow			
Airflow =	Effectiveness			

- Zone Air
 Distribution
 Effectiveness
- Amount of outdoor airflow depends upon distribution configuration
- Cool air supply by DOAS system minimizes amount of outside air required

Occupancy Category	Exhaust Rate, cfm/unit	Exhaust Rate, cfm/ft ²	Notes	Exhaust Rate, L∕s∙unit	Exhaust Rate, L/s·m ²	Air Class
Arenas	<u> </u>	0.50	В	—	- (1
Art classrooms	\leq	0.70		—	3.5	2
Auto repair rooms	_	1.50	А	—	7.5	2
Barber shops	_	0.50		_	2.5	2
Beauty and nail salons	_	0.60		_	3.0	2
Cells with toilet	_	1.00		_	5.0	2
Copy, printing rooms	_	0.50		_	2.5	2
Darkrooms	_	1.00		_	5.0	2
Educational science laboratories	—	1.00		—	5.0	2
Janitor closets, trash rooms, recycling	_	1.00		_	5.0	3
Residential kitchens	50/100	_	G	25/50	—	2
Soiled laundry storage rooms	—	1.00	F	—	5.0	3
Storage rooms, chemical	_	1.50	F	_	7.5	4
Toilets-private	25/50	_	E, H	12.5/25	—	2
Toilets—public	50/70	—	D, H	25/35	_	2
Woodwork shop/classrooms	_	0.50		_	2.5	2

NOTES:

A Stands where engines are run shall have exhaust systems that directly connect to the engine exhaust and prevent escape of fumes.

B Where combustion equipment is intended to be used on the playing surface additional dilution ventilation, source control, or both shall be provided.

C Exhaust shall not be required where two or more sides comprise walls that are at least 50% open to the outside.

D Rate is per water closet, urinal, or both. Provide the higher rate where periods of heavy use are expected to occur. The lower rate shall be permitted to be used otherwise.

E Rate is for a toilet room intended to be occupied by one person at a time. For continuous system operation during hours of use, the lower rate shall be permitted to be used. Otherwise the higher rate shall be used.

F See other applicable standards for exhaust rate.

G For continuous system operation, the lower rate shall be permitted to be used. Otherwise the higher rate shall be used.

H Exhaust air that has been cleaned to meet Class 1 criteria from Section 5.16.1 shall be permitted to be recirculated.

I Rate is per showerhead.

May 2020 I © Ventacity Systems, Inc.

- Exhaust Rate per Unit
- Exhaust Rate per Area
- Air Class
- Private Toilets: single toilet
- Public Toilets: multiple toilets

How Much Ventilation is Needed? Passive House Institute

Passive House Non-Residential Air Flow Rate Guidelines							
	Rate [CFM/P]	Rate [CMH/P]	Note				
Schools	9 to 12	15 to 20	CO2 limit between 1200 -1500 PPM				
Office	18	30					
Gymnasium	36	60	Demand control recommended				

- Very little
 prescriptive rates
 available
- Generally follow code/ASHRAE requirements.
- Demand control whenever feasible to minimize airflow to meet occupancy

How Much Ventilation is Needed? Passive House Institute

2,400 sq ft Home

2,400' x 8' ceiling height = 19,200 cubic feet

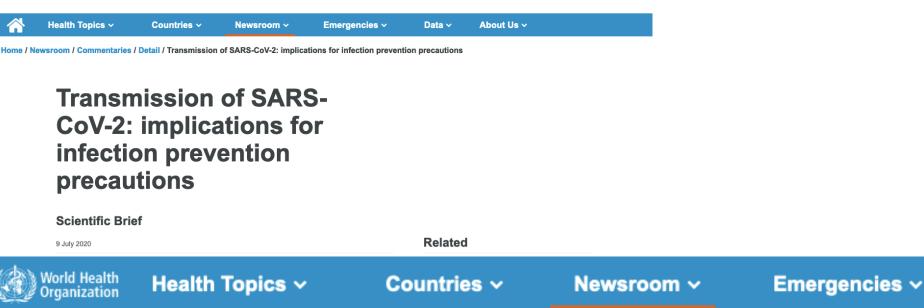
19,200/60 = 320

320 x 0.3 = 96 cfm

- Residential Rate =
 0.3 ACH
- Generally follow code/ASHRAE requirements.
- Demand control
 whenever feasible
 to minimize airflow
 to meet occupancy

How Much Ventilation is Needed? Other High-Performance Standards

CHALLENGE


 All these standards reference ASHRAE
 62.1

•

LEED and Well Building Standard offer points for 30% higher airflow than ASHRAE 62.1

Airborne transmission

Airborne transmission is defined as the spread of an infectious agent caused by the dissemination of droplet nuclei (aerosols) that remain infectious when suspended in air over long distances and time.(11) Airborne transmission of SARS-CoV-2 can occur during medical procedures that generate aerosols ("aerosol generating procedures").(12) WHO, together with the scientific community, has been actively discussing and evaluating whether SARS-CoV-2 may also spread through aerosols in the absence of aerosol generating procedures, particularly in indoor settings with poor ventilation.

April 2020© Ventacity Systems, Inc.

Experts Weigh In

The New York Times

Opinion

Your Building Can Make You Sick or Keep You Well

Proper ventilation, filtration and humidity reduce the spread of pathogens like the new coronavirus.

By Joseph G. Allen

Dr. Allen is director of the Healthy Buildings program at Harvard T.H. Chan School of Public Health.

March 4, 2020

Forty-Six Years Later.....

In 1974, a young girl with measles went to school in upstate New York. Even though 97 percent of her fellow students had been vaccinated, 28 ended up contracting the disease. The infected students were spread out across 14 classrooms, but the young girl, the index patient, spent time only in her own classroom. The culprit? A ventilation system operating in recirculating mode that sucked in the viral particles from her classroom and spread them around the school.

Buildings, as <u>this historical example</u> highlights, are highly efficient at spreading disease.

Mounting Evidence

Back to the present, the most high-profile evidence of the power of buildings to spread the coronavirus is from a cruise ship — essentially a floating building. Of the 3,000 or so passengers and crew members onboard the quarantined Diamond Princess, <u>at least 700</u> are known to have contracted the new coronavirus, a rate of infection that is significantly higher than that in Wuhan, China, where the disease was first found.

Schools!

It is widely known, after multiple studies across North America, Europe and beyond, that schools have poor IAQ and health.

Impacts include learning impairment, reduced cognitive function and increased illness and absence.

PPS says it will comply after state clarifies air quality recommendations

Aimee Green - The Oregonian/OregonLive

In a sweeping about-face, Oregon's largest school district on Friday said it will "strive" to increase a key measure of air quality to bare minimum levels longtrumpeted by a wide swath of experts nationwide.

Portland Public Schools' announcement comes after an investigation by The Oregonian/OregonLive in May found nearly 500 classrooms with subpar ventilation rates that experts said could increase the risk of airborne-disease transmission as well as lower the ability of students to learn in stuffy classrooms with stale air.

The district's announcement also comes on the heels of clarified guidance from the Oregon Health Authority, brought about by questions raised by The Oregonian/OregonLive this month. On Thursday, the health authority told school officials it "recommends a range of 3-6 air changes per hour" along with other efforts to improve indoor air quality.

The Solution

Here's what we should be doing. First, bringing in more outdoor air in buildings with heating and ventilation systems (or opening windows in buildings that don't) helps dilute airborne contaminants, making infection less likely. For years, we have been doing the opposite: sealing our windows shut and recirculating air. The result are schools and office buildings that are chronically underventilated. This not only gives a boost to disease transmission, including common scourges like the norovirus or the common flu, but also significantly impairs cognitive function.

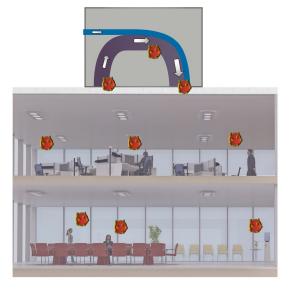
A study published just last year found that ensuring even minimum levels of outdoor air ventilation reduced influenza transmission as much as having 50 percent to 60 percent of the people in a building vaccinated.

Avoid Re-Circulation, But If You Must....

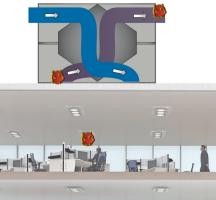
Buildings typically recirculate some air, which has been shown to lead to higher risk of infection during outbreaks, as contaminated air in one area is circulated to other parts of the building (as it did in the school with measles). When it's very cold or very hot, the air coming out of the vent in a school classroom or office may be completely recirculated. That's a recipe for disaster.

If air absolutely has to be recirculated, you can minimize crosscontamination by enhancing the level of filtration. Most buildings use low-grade filters that may capture less than 20 percent of viral particles. Most hospitals, though, use a filter with what's known as a MERV rating of 13 or higher. And for good reason — they can capture more than 80 percent of airborne viral particles.

DOAS IS BETTER

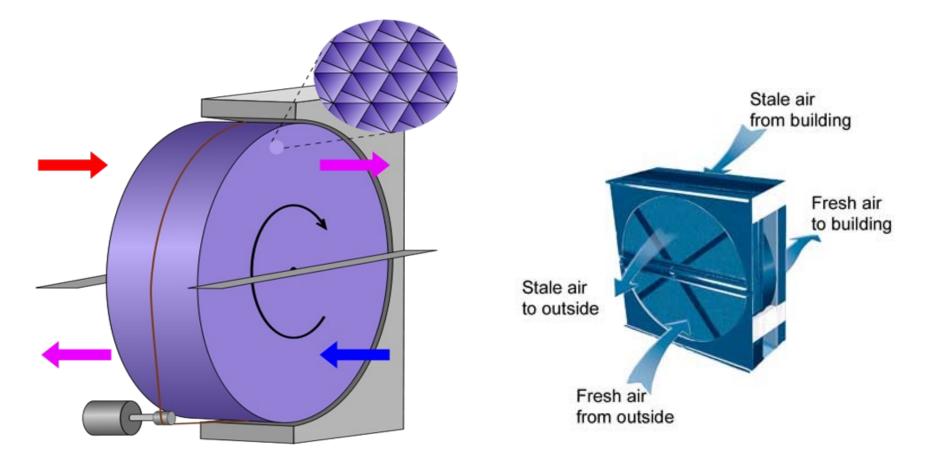

www.ventacity.com + 2828 SW Corbett Ave, Suite 119, Portland, CR 97201 + 888.836.8458

Chapter 3: Ventilation Requirements


April 2020© Ventacity Systems, Inc.

DOAS IS BETTER

VENTACITYSYSTEMS


www.ventacity.com · 2828 SW Corbett Ave, Suite 119, Portland, OR 97201 · 888.836.8458

Chapter 3: Ventilation Requirements

Chapter 4: What's In The Box?

Enthalpy Wheel ERV

Ventilation in the Age of COVID-19

Preventing Covid-19 spreading in buildings

In response to the coronavirus pandemic, REHVA experts have published a guidance document on how to operate and use building services to minimise the spread of Covid-19. Alex Smith provides a summary of their findings

Posted in March 2020

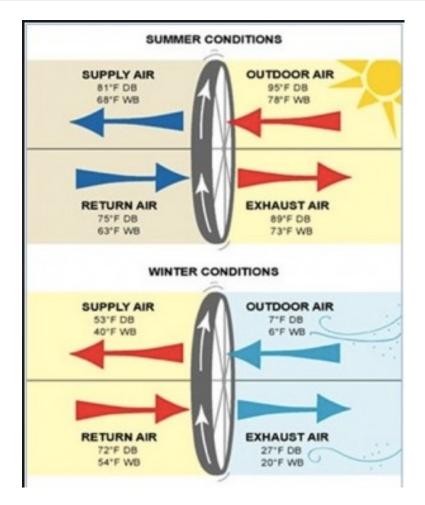
Increase air supply and exhaust ventilation

The general advice is to supply as much outside air as possible. Expanded operation times are recommended for buildings with mechanical ventilation. Consider keeping the ventilation on 24/7 with lower ventilation rates when people are absent.

If employee numbers reduce, do not place remaining staff in smaller areas. Exhaust ventilation systems of toilets should always be left on 24/7, and relatively negative pressure must be maintained in the room air to help avoid faecal-oral transmission.

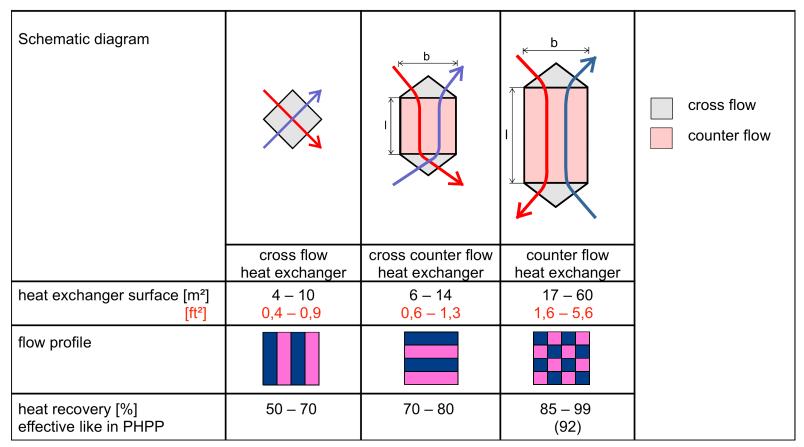
Ventilation in the Age of COVID-19

Safe use of heat-recovery devices

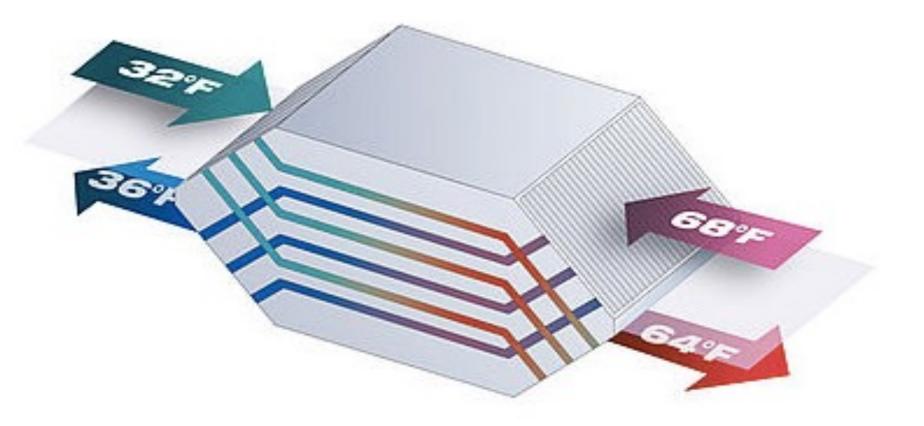

Virus particles in extract air can re-enter the building. Heat-recovery devices may carry over the virus attached to particles from the exhaust airside to the supply airside via leaks. In rotary heat exchangers (including enthalpy wheels) particles deposit on the return airside of the heat exchanger surface, after which they might be resuspended when the heat exchanger turns to the supply airside.

Based on current evidence, REHVA recommends turning off rotary heat exchangers temporarily during SARS-CoV-2 episodes. Its document goes on to state: if leaks are suspected in the heat-recovery sections, pressure adjustment or bypassing can be an option to avoid a situation where higher pressure on the extract side causes air leakages to the supply side.

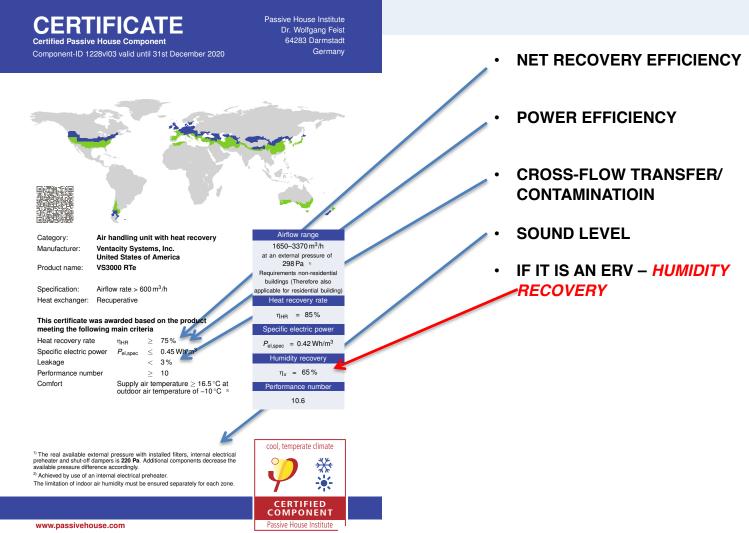
Transmission via heat-recovery devices is not an issue when a HVAC system is equipped with a twin-coil ('run around' coil) or other heat-recovery device that guarantees air separation between return and supply side.

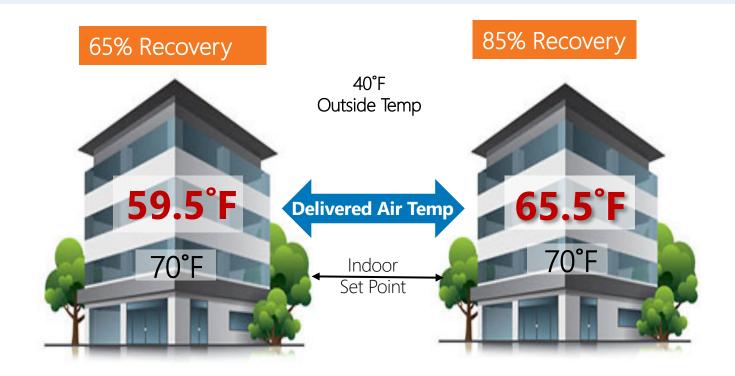


Enthalpy Wheel ERV

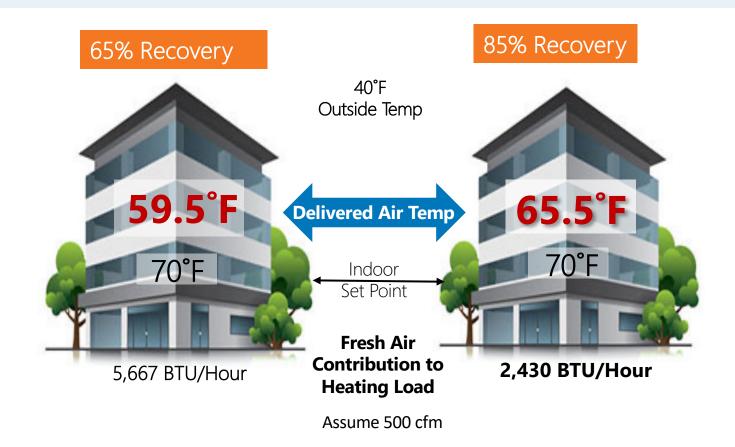


Options for H/ERV Cores


Very High Efficiency Counter-Flow Heat Exchanger


May 2020 | © Ventacity Systems, Inc.

Passive House Efficiency



April 2022© Ventacity Systems, Inc.

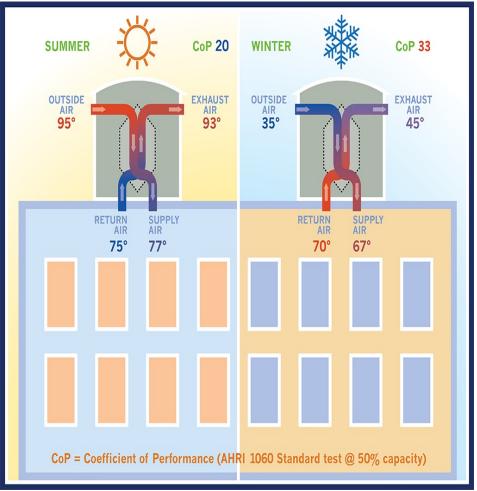
Efficiency Means Comfort

Efficiency Means Comfort

The Ventilator Technology

High-flow economizing

Sophisticated controls and data collection & reporting


Very high recovery efficiency counter-flow core

Very high motor & fan efficiency

Easily adaptable to existing RTU curbs

Chapter 4: What's In The Box?

Efficiency, Efficiency, Efficiency!

NET EFFICIENCY MATTERS!

- BUILDING LOAD REDUCTION
- HIGH COMFORT LEVEL
- NO NEED TO REHEAT
- SIMPLER CONTROLS
- HIGH RETURN (COP)

Chapter 4: What's In The Box?

SIGNIFICANT ROI

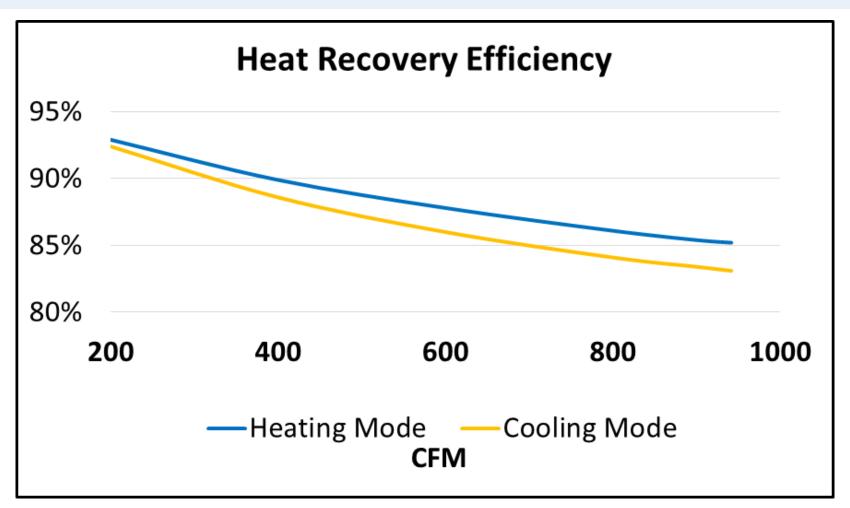
Ventacity Comparison: North Beach Elementary ERV-1 @ 3000CFM, 1"W.C.

Assumption	Parameter		Competitor		Ventacity
	Fan Power (W)		6114		342
	Delivered (SA) Temperature Deg F		53.4		57.
	Heat Recovered (W)		30785		3495
	Heat Recovered (BTU/h)		104976		11920
•	Hours per day		10		1
•	Days per month		25		2
•	Months per year		9		
	Heat Recovered per month (kW.h)		7696		873
	Heat Recovered per year (kW.h)		69266		7865
	HRV/ERV CoP		5.0		10.
	Heat Load from fresh HRV/ERV air (W)		15772	_	1161
	Heat Load from fresh HRV/ERV air (BTU/h)		53784		3960
•	heat Pump CoP (heating)		1		
	Heat pump power to heat HRV/ERV SA (W)		15772		1161
	Power: Heat Pump Plus fan (W)		21886		1503
•	Electrical rate \$/kWh		0.15		0.1
	Monthly electric bill HRV/ERV Power plus				
	Power to heat fresh air. \$	\$	821	\$	564
	Annual electic bill to heat fresh air \$	\$	7,387	\$	5,074
		-			
	Savings Per Unit	\$	2,313		
	Savings for 6 Units	\$	13,876.37		
	Savings for 6 Units over 10 Years	\$	138,763.75		

- BIGGER
 VOLUMES
 EQUALS BIGGER
 SAVINGS
- SCHOOL USED TEN YEAR BOND

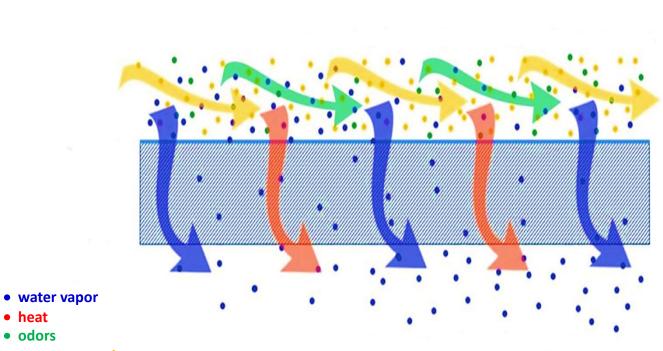
 SAVINGS MORE THAN
 COVERED
 INCREASED
 COST OF
 PROJECT OVER
 LIFE OF LOAN
- COP IS <u>DOUBLE</u> THAT OF CONVENTIONAL ERVS

Two key conversion performance drivers


HVAC whole-system COP

oor of a New	<mark>/ York high</mark> ri	ise:
70	85	0
1,000	1,000	1,000
600	390	510
3,650	3,650	3,650
35	35	35
70	70	70
35	35	35
r 26,460	32,130	0
r 11,340	5,670	37,800
19.4	10.8	44.6
r 2,047	1,331	1,740
0.75	3.00	0.75
s 355		1,183
3,154	10,283	3,066
12.9	24.1	na
3.1	5.3	0.75
	70 1,000 600 3,650 35 70 35 r 26,460 r 11,340 19.4 r 2,047 0.75 s 355 3,154	1,000 1,000 600 390 3,650 3,650 35 35 70 70 35 35 70 70 35 35 11,340 5,670 19.4 10.8 r 2,047 1,331 0.75 3.00 is 355 3,154 10,283

Designing for "off"


April 2022© Ventacity Systems, Inc.

Heat Exchanger Core Efficiency – VS1000 RT

April 2022© Ventacity Systems, Inc.

Plate Exchanger with Enthalpy Recovery

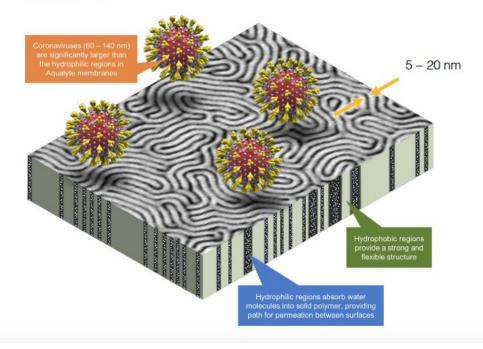

• gases, contaminants

Plate Exchanger with Enthalpy Recovery

2. Diffusion through the membrane

Enthalpy exchangers are produced of widely varying materials. In Asia and North America, cellulose paper is often used. These enthalpy exchangers are usually very cheap, but as they are very sensitive to water, it is very hard to get a hygiene certification for these models. It is also challenging to get hygiene certifications for porous plastic foils.

The multilayer membrane developed by Polybloc and its partners allows water molecules to transfer without using porous foils.

Should you use an HRV or an ERV?

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

Humidity Control Design Guide

for Commercial and Institutional Buildings

Lew Harriman Geoff Brundrett Reinhold Kittler Tight, well-built buildings in cold and mixed climates need dry outside air in the wintertime to mitigate the interior latent loads. Otherwise moisture related problems could occur.

THE EFFECT OF ENTHALPY RECOVERY VENTILATION ON THE RESIDENTIAL INDOOR CLIMATE

Bart Cremers

Zehnder Group Nederland Lingenstraat 2 8028 PM Zwolle, The Netherlands bart.cremers@zehndergroup.com

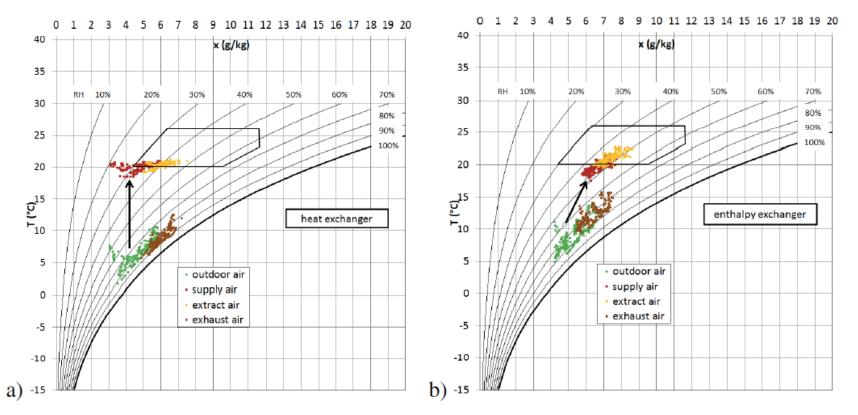
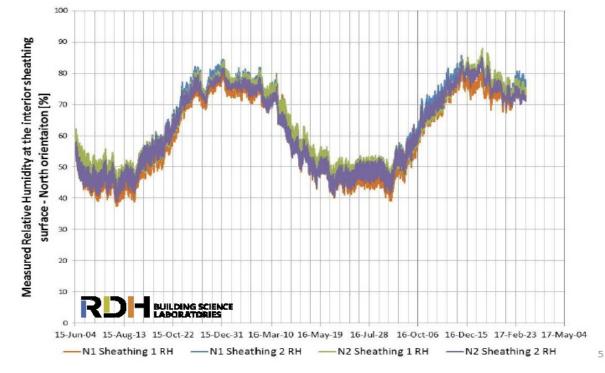
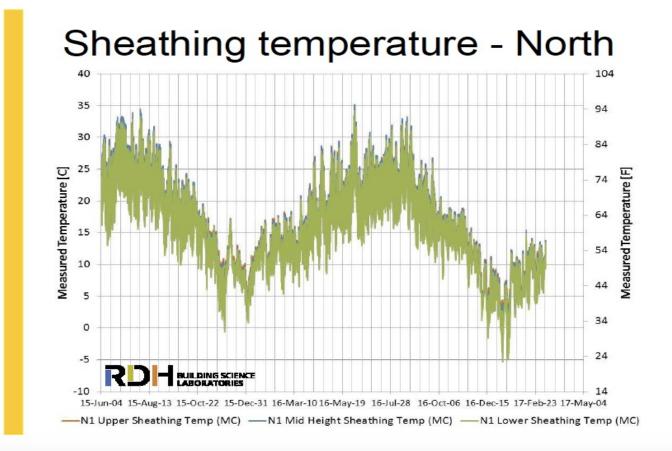



Figure 3: The effect of a heat exchanger (a) and an enthalpy exchanger (b) on the supply air and the indoor air.


Should you use an HRV or an ERV?

Should you use an HRV or an ERV?

Should you use an **HRV or an ERV?**

Ventacity HRV / ERV

VS3000

100 ft

2400 CFM

2400 CFM

Ventacity Model

Supply Flow

Exhaust Flow

Altitude

VENTACITY SI	STEMS
--------------	-------

ALWAYS HEALTHY · ALWAYS EFFICIENT

Project Information Quick Selector

Project Name: Example Project Name

Portland City: State/Province: OR Org Name: Customer Co, Inc. Org Contact Name: John Doe Org Contact Phone: 800-555-1212 Org Contact Email: john@buildingowner.com Created Create

Pro

Des Des or De

Desi Des or De

ted By: You ted On: 1/1/2020		75 50 15.23 25 28.3		
oject Conditions				
Summer Conditions	Unconditioned OA	HRV OA	ERV OA	
Cooling	Cooling Load	Cooling Load	Cooling Load	
Outside DBT 91.4 °F	Supply DBT 91.4 °F	Supply DBT 75.2 °F	Supply DBT 77.4 °F	
Outside WBT 67.3 °F	Supply WBT 67.3 °F	Supply WBT 61.9 °F	Supply WBT 62.5 °F	
or Outside RH % 28.0 esign Inside DBT 73.0 °F sign Inside WBT °F Design Inside RH 50.0 % 50.0	Supply RH 28.0 %	Supply RH 47.2 % Efficiency (S) 87.9 %	Supply RH 43.5 % Efficiency (S) 76.1 % Efficiency (L) 57.2 %	
	Total Load 49.47 kBTU/h	Total Load 7.47 kBTU/h	Total Load 12.1 kBTU/h	
	Sensible Load 47.69 kBTU/h	Sensible Load 5.76 kBTU/h	Sensible Load 11.4 kBTU/h	
	Latent Load 1.78 kBTU/h	Latent Load 1.71 kBTU/h	Latent Load 0.7 kBTU/h	
Winter Conditions	Unconditioned OA	HRV OA	ERV OA	
Heating	Heating Load	Heating Load	Heating Load	
Outside DBT 25.2 °F Outside WBT 23 °F or Outside RH % 72.4 sign Inside DBT 70 °F sign Inside WBT Design Inside RH 50 % 50.0	Supply DBT 25.2 °F Supply WBT 23.0 Supply RH 72.4 %	Supply DBT 64.1 °F Supply WBT 45.1 °F Supply RH 16.3 % Efficiency (S) 86.9 %	Supply DBT 59.1 °F Supply WBT 50.3 °F Supply RH 54.1 % Efficiency (S) 75.6 % Efficiency (L) 64.6 %	
	Total Load 116.12 kBTU/h	Total Load 15.23 kBTU/h	Total Load 28.3 kBTU/h	
	(Sensible)	(Sensible)	(Sensible)	

Total OA Load (Uncond. / HRV / ERV)

7.47

12.1

49.47

116.12

40

30

20

10

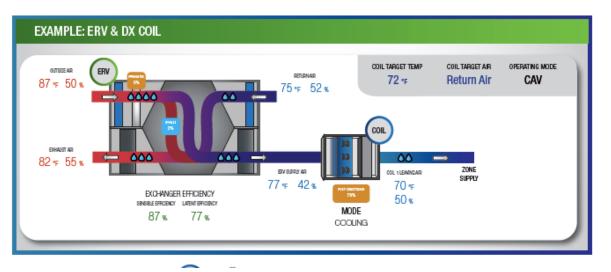
100

kBTU/

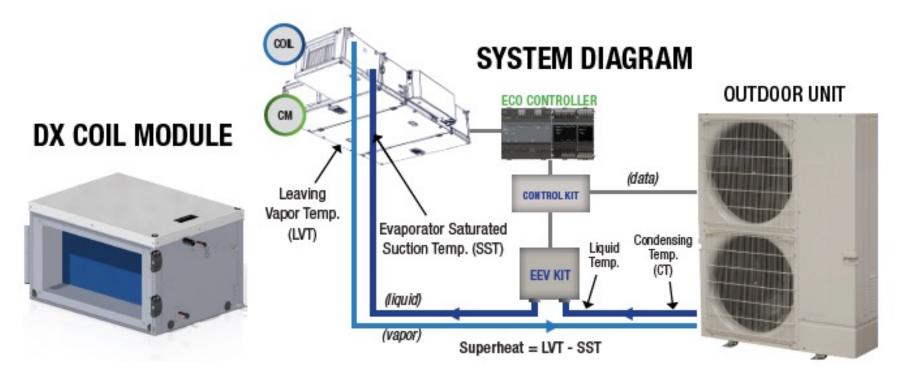
kBTU/

.100 89 -87 8 kbtu/h

Post-Heating/Cooling, **Humidity Control With DX Coil**

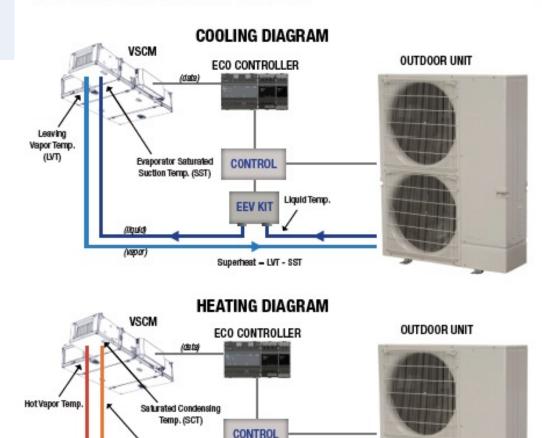


DX COIL & ECO CONTROLLER


FOR ERV/HRV POST-CONDITIONING

VENTACITY SYSTEMS provides a suite of DX Coil Modules for the following ERV and HRV ventilators: VS1200CM, VS900CM, VS400CM, VS250CM, VS1000RT*, and VS3000RT.

- DX coils are compatible with VRF systems.
- ECO Controller: Energy Conserving Orchestration. Used for added features (see following pages).


Controls are Key

*NOTE: VS1000RT-DX is the VS1200CM-DX

Heating, Cooling, Humidity Control

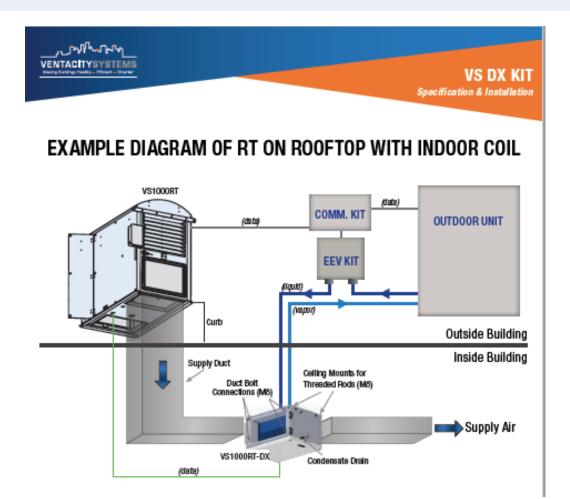
Chapter 4: What's In The Box?

VS DX KIT SPECIFICATION & INSTALLATION

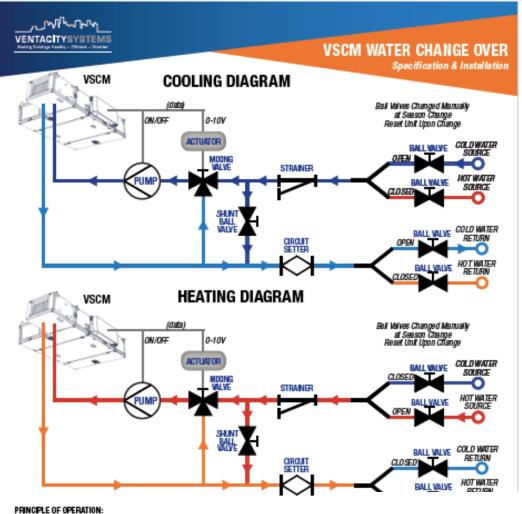
EEV KIT

Subcooling - SCT - LLT

Leaving Liquid Temp.


(LD)

(vapor)

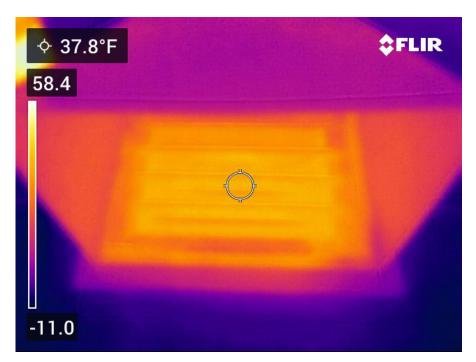

Rev 01.19

November 16, 2020

Rooftop Installation with DX Coil Installed On Inside Ducting

Hydronic Changeover Coil Option

MADE TOOL


Aim to achieve user defined temperature seripoint (set at home acreen of control panel, or

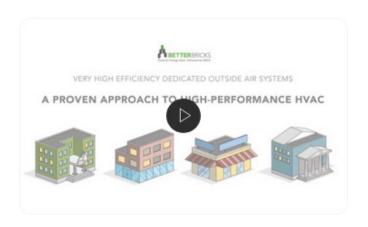
Exhaust Side Matters

Exhaust Side Matters

Exhaust Side Matters

Chapter 4: What's In The Box?

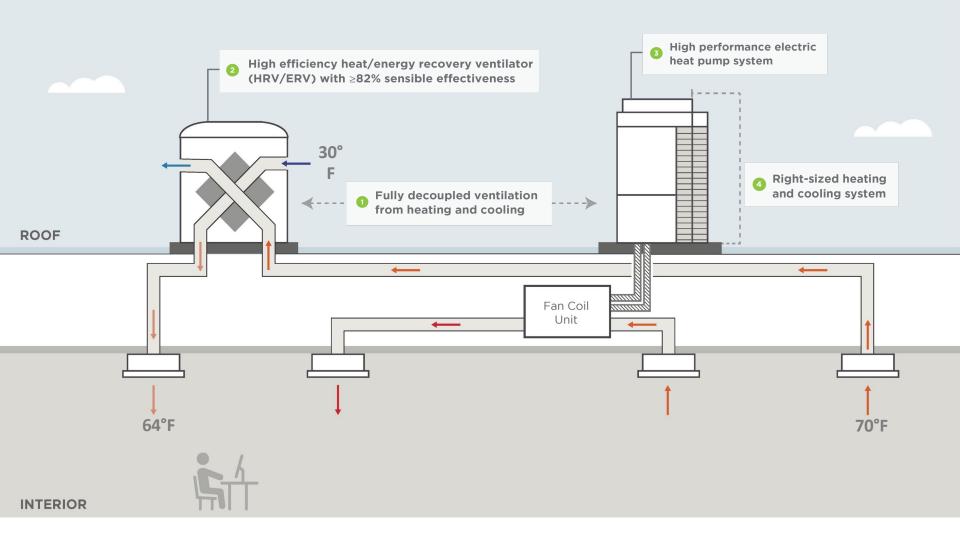
Chapter 5: VHE DOAS Program


Chapter 5: VHE DOAS Program

Better Bricks/NEEA VHE DOAS

Events Blog Contact Q

Better Bricks/NEEA VHE DOAS



HVAC +1 Tags

[Video] Very High Efficiency DOAS: How It Works and Why It Matters

In commercial buildings across the U.S., outdated or inefficient HVAC systems waste a staggering amount of energy and money, while also creating unhealthy and uncomfortable indoor environments. However, research and field studies have proven there's an optimal approach to HVAC design that can significantly improve indoor air quality and occupant health, comfort and productivity, while maximizing energy-cost savings. Learn how this optimized, high-performance approach to HVAC combines high-efficiency equipment with design best practices to make widespread commercial HVAC deficiencies a thing of the past.

- Established Model
- Multiple Case Studies
- Specification
- Proven Results

Chapter 5: VHE DOAS Program

Better Bricks/NEEA VHE DOAS

Energy Solutions Resources Utility Programs About

A Share

A Proven Approach to High-Performance HVAC Improves Efficiency, Health and Comfort

SELL SHEETS

Very high efficiency dedicated outside air systems (very high efficiency DOAS) pair the highest performance HVAC equipment with key design principles to provide cleaner and safer indoor air, enhance indoor comfort, and reduce commercial building HVAC energy use. This approach has been demonstrated to reduce HVAC energy use by an average of 69% when compared to a code-minimum version of the existing equipment (often a packaged rooftop unit).

Very high efficiency DOAS consists of the following key elements:

- 1. A high efficiency HRV/ERV that features 82% or greater sensible effectiveness.
- 2. High-performance heating and cooling system that meets ENERGY STAR® performance standards.
- 3. Ventilation fully separated from heating and cooling.
- 4. Right-sized heating and cooling equipment.

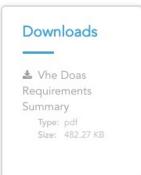
To learn more about very high efficiency DOAS, including through case studies, research, and technical guides, visit: https://betterbricks.com/solut...

Downloads ▲ Very High Efficiency DOAS Fact Sheet Type: pdf Size: 477.83 KB

PROGRAM SPECIFICATION

https://betterbricks.com/resources/very-high-efficiency-doas-system-requirements

ABOUT SOLUTIONS CASE STUDIES RESOURCES UTILITY PROGRAMS


🕈 Share | Rating: ເກີດເລີເລີ

Very High Efficiency DOAS System Requirements

I ARTICLE

System Requirements and Recommendations Summary

These system requirements and recommendations are intended to provide guidance to manufacturers, designers and specifiers regarding the components of very high efficiency dedicated outside air systems (or very high efficiency DOAS). Developed over several years of research, market analysis, and demonstration project installations, these system requirements have been refined to decrease energy consumption, improve indoor-air quality, and improve occupant comfort over conventional systems.

PROGRAM SPECIFICATION

Table 1: Minimum Equipment Performance [learn more]

Heat Recovery Ventilation [learn more]

- Minimum efficiency: Passive House Institute¹ (PHI) certified, or minimum 82% Sensible Effectiveness² of heat exchanger (HX) at Air-Conditioning, Heating & Refrigeration Institute (AHRI) Standard 1060 winter conditions at 75% of rated flow³ verified by independent third-party testing⁴.
- Minimum fan efficacy: PHI-certified, or minimum 1.4 cubic feet per minimum per Watt (cfm/Watt) at 0.5" water gauge (w.g.) external static pressure (ESP) at 75% of rated full airflow⁵.

VHE DOAS - The Basics

Reduce ventilation load by 85-90%

75

The VHE Concept - Heating and Cooling

- Very high efficiency heat pump-based heating and cooling.
- System significantly downsized due to the removal of most of the ventilation load.
- Design simplicity and minimizing indoor fan/coil units greatly improves economics and reliability, reduces refrigerant volumes and piping losses (parasitic losses).

Critical System Elements

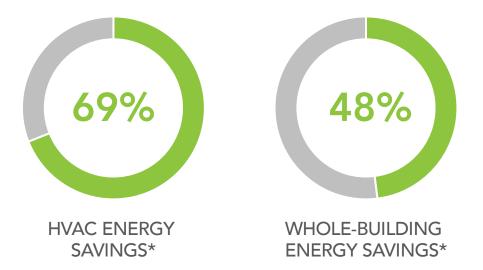
- Use heating/cooling systems with high part-load efficiency and minimize parasitic losses.
- Good ducting design
- Use systems with very low fan power.
- Design for "off."

Controls are important

Pilot Projects

Chapter 5: VHE DOAS Program

NEEA pilot project results are fairly consistent:

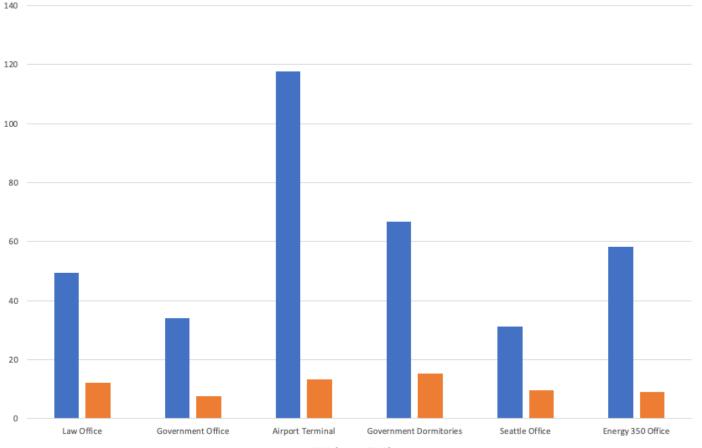

- In office occupancies:
 - 50 75% HVAC energy savings (ending HVAC EUI 11 kBtu/sq ft, ±3)
 - 20 40% cooling demand reduction
 - 30 60% whole-building energy savings
 - Very high indoor air quality
 - Excellent indoor comfort
 - Lower maintenance costs
 - Radical system simplification
 - Simple but sophisticated, inexpensive controls
 - No building improvements required (but in many cases they would be a good idea – e.g., glazing/secondary glazing)

Chapter 5: VHE DOAS Program

• Wide variation in building base loads (6-35 kBtu/sq ft)

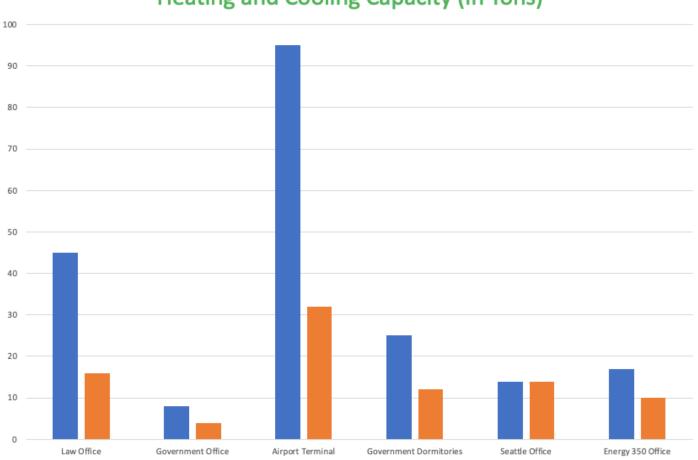
April 2022© Ventacity Systems, Inc.

A proven approach to high-performance HVAC



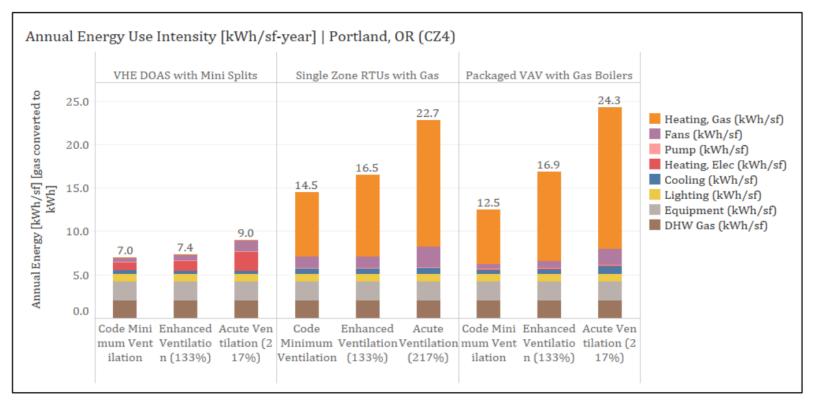
12 pilots using the very high efficiency DOAS approach in small-to-medium commercial buildings across the NW proved significant average energy savings based on if the building had started with standard code-minimum equipment.

*When compared to a codeminimum version of the existing equipment (often a packaged rooftop unit)


HVAC EUI Results

Before & After HVAC EUI

EUI Before EUI After


HVAC Capacity Reductions

Heating and Cooling Capacity (In Tons)

Before After

Increased Ventilation and Energy Cost

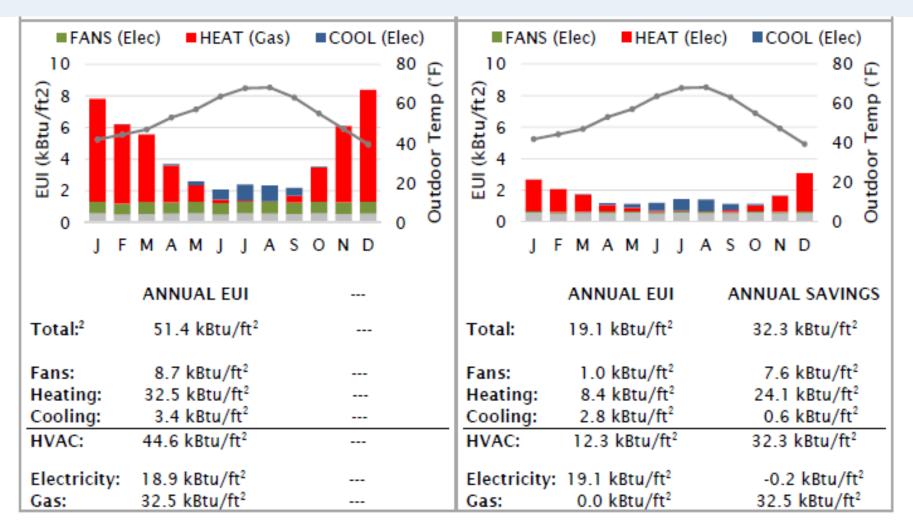
Source: BetterBricks | Covid-19 Risk Reduction Strategies and HVAC System Energy Impact

Other results

Project	Floor Area (sq ft)	Installed System Capacity (tons)	Conditioned Floor Area / Ton (sq ft / ton)	Number of System Zones	Conditioned Floor Area per Zone (sq ft / zone)	Project Cost	Project Cost per Square Foot
Law Office	11,615	16	726	8	1,452	\$181,256	\$15.61
Pizza Restaurant	1,730	9	192	4	433	\$37,400	\$21.62
Government District Office1	3,770	8	471	2	1,885	\$43,238	\$11.47
Utility District Office	5,681	8	710	8	710	\$125,528	\$22.10
Airport Terminal Building	26,200	32	819	37	708	\$928,500	\$35.44
Government Dormitories (4)	~11,000, (each building)	16	688	5	2,200	\$106,000	\$9.64
Seattle Office	6,100	14	422	12	508	\$99,500	\$16.83
Restaurant	1,147	3	382	3	382	\$35,550	\$30.99

85 April 2022© Ventacity Systems, Inc.

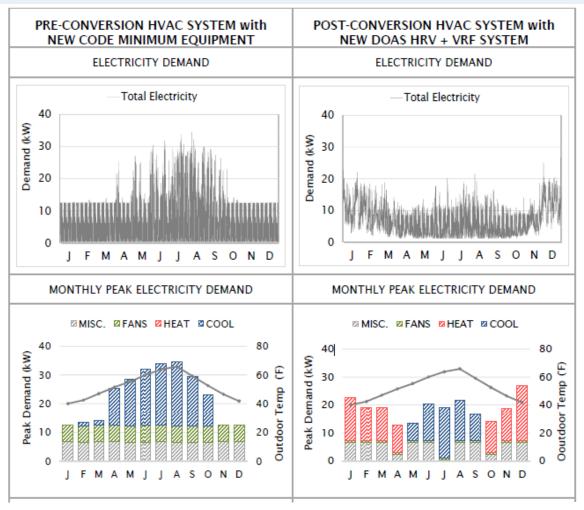
Law Office



- 1907, 2nd floor suite, 11,615 sq ft, 12" brick walls, 900 sq ft glazing (new), R-38 ceiling insulation (new), LED lighting (new)
- Remove 35 tons cooling, 45 tons gas heating in nine RTUs (332 sq ft/ton)
- Install Four Ventacity VS 1000s, one 16-ton Mitsubishi VRF system (725 sq ft/ton)
- Distributor proposal: 41 indoor units (24 tons, or 500 sq ft/ton)
- Final system: eight 2-ton AHUs w/short ducting
- 2 VS 1000s for conference rooms, 2 for the rest
- Sound transmission was an issue

Law Office - VRF Zoning

Law Office Results - Energy



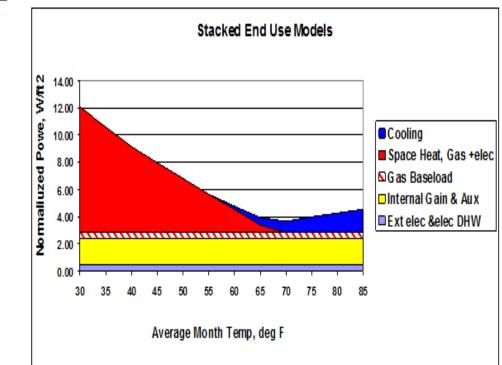
April 2022© Ventacity Systems, Inc.

Chapter 5: VHE DOAS Program

88

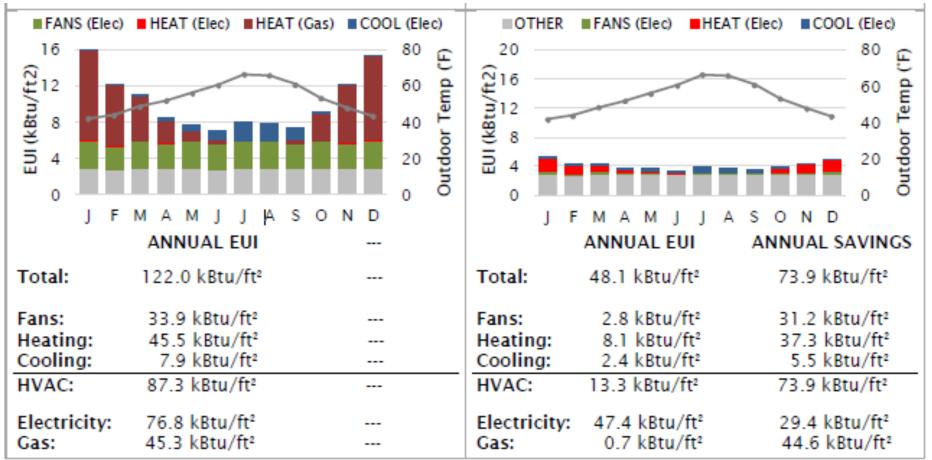
Law Office Results - Demand

Airport Terminal Before & After



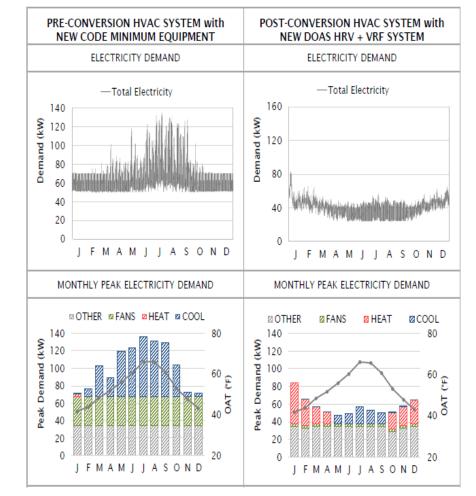
Airport Terminal Building

- 1930, 2-story, 25,200 sq ft, updated glazing & insulation
- Remove Two 40-ton, one 15ton dual-deck RTUs (265 sq ft/ton)
 - Lots of simultaneous heating & cooling
- Install Three Ventacity VS 1000s; two 8-ton, one 10-ton, one 6-ton Mitsubishi VRF systems (788 sq ft/ton)
 - 37 indoor units



Chapter 5: VHE DOAS Program

April 2022© Ventacity Systems, Inc.


Airport Terminal Results - Energy

1 Minor additive discrepancies are due to rounding.

Airport Terminal Results - Demand

- Peak January Demand (highest post-conversion month): ~72 kW to 83 kW (15% increase)
- Peak July Demand (highest pre-conversion month): ~138 kW to 58 kW (58% reduction)
- Overall, demand is essentially flattened, with average summer demand slightly lower than average winter demand.

Office in Portland, OR

BETTERBRICKS Powerful Energy Ideas. Delivered by NEEA.

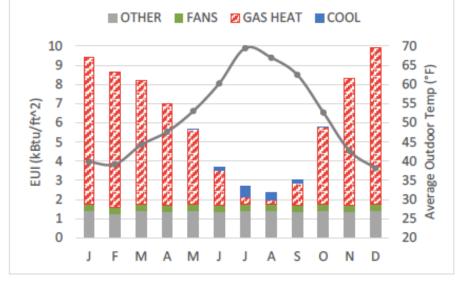
HVAC CASE STUDY PORTLAND FIRM ENGINEERS THERMAL COMFORT AND HVAC EFFICIENCY

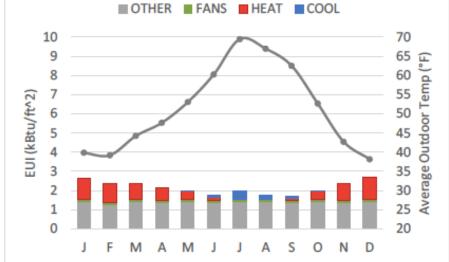
"Before this project, our thermal comfort and ventilation were limited. We had no reliable control of our building's air changes, and thermal comfort was difficult to achieve universally due to our single-zone systems. This project increased confidence in our building safety with added air changes and controllability and improved occupant comfort by adding several zones. I'm most impressed at how much system capacity we were able to remove and still maintain comfort through a few unprecedented weather events."

— Josh Weissert, Principal Engineer, Energy 350

PROJECT OVERVIEW

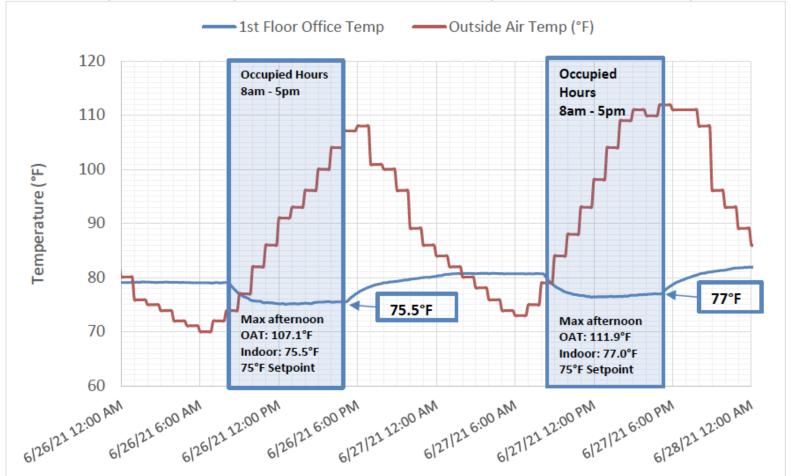
BUILDING TYPE Office


ENERGY UTILITY/PROGRAM Portland General Electric (\$) TOTAL PROJECT COST \$13.94 per sq. fl.¹


S REDUCTION IN TOTAL BUILDING ENERGY USE 66%² **S** REDUCTION IN HVAC SYSTEM ENERGY USE **84%**²

Office in Portland, OR

Pre-Conversion (As Modeled)


Post-Conversion (As Modeled)

Office in Portland, OR

System Resiliency in an Extreme Weather Event (June 26th and 28th, 2021)

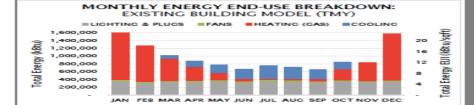
Tarrytown Office Building

97 April 2022© Ventacity Systems, Inc.

ELECTRIFICATION DONE RIGHT!

AIRSTAGE CASE STUDY

FUJITSU PROVIDES SOLUTION FOR CON EDISON NATURAL GAS MORATORIUM


FUITSU

IMPROVED HEALTH

IMPROVED COMFORT

LARGEST PROJECT to date

MONTHLY ENERGY END-USE BREAKDOWN: CODE MINIMUM RETROFIT MODEL (TMY)

LIGHTING & PLUCS FANS HEATING (GAS) COOLING

1,600,000

1,400,000

1,200,000

1,000,000

800,000

400,000

200,000

Energy (kBtu)

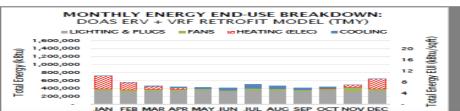
Otal

Figure 2.1

Monthly energy end-use breakdown for the Existing Building Model (TMY).

fotal Energy EUI (kBtu/sqft)

20


16

12

8

4

Monthly energy end-use breakdown for the Code Minimum Model (TMY).

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Figure 2.3

Monthly energy end-use breakdown for the DOAS ERV + VRF Model (TMY).

Chapter 5: VHE DOAS Program

April 2022© Ventacity Systems, Inc.

HUGE SAVINGS EXCEED THE MODEL

- 71,000 Sq ft
- 4 stories + partial basement
- Existing HVAC system based on dual-deck RTUs
- Lots of simultaneous heating & cooling
- Conversion completed (while occupied) in late 2019
- 2018 peak demand 519 kW (June)
- 2020 peak demand 366 kW (November)
- 2020 highest summer peak demand 208 kW (July)

MODELED AND ACTUAL PERFORMANCE

Annual Savings

Modeled (TMY)	Actual (not TMY)
---------------	------------------

Electricity (kWh)	224,000	656,000
-------------------	---------	---------

 Natural Gas (therms)
 38,800
 52,650

Annual Energy Cost

\$61,700

\$213,920

April 2022© Ventacity Systems, Inc.

Loads and Heating/Cooling Capacity

Project	Floor Area (sq ft)	Installed System Capacity (tons)	Conditioned Floor Area / Ton (sq ft / ton)	
Law Office	11,615	16	726	
Pizza Restaurant	1,730	9	192	
Government District Office1	3,770	8	471	
Utility District Office	5,681	8	710	
Airport Terminal Building	26,200	32	819	
Government Dormitories (4)	~ 11,000, (each building)	16	688	
Seattle Office	6,100	14	422	
Restaurant	1,147	3	382	

- PNW target for existing buildings : 750 sq ft / ton
- PNW target for new buildings : 1,000 sq ft / ton
- Chicago Target for existing Buildings: 550-600 sq ft / ton
- Chicago Target for new Buildings: 800-900 sq ft / ton

April 2022© Ventacity Systems, Inc.

10

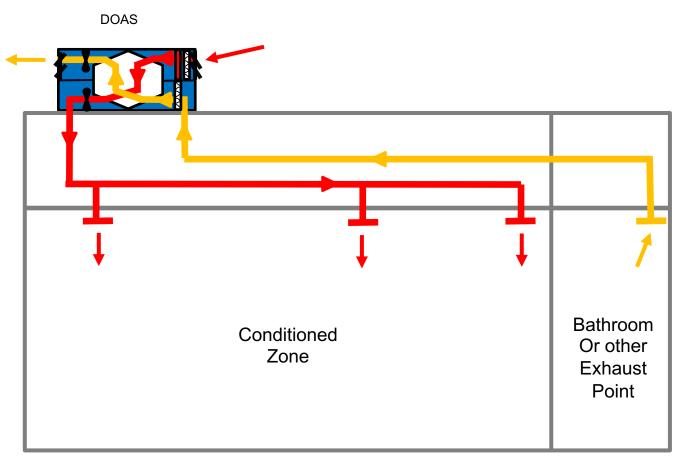
NYSERDA & COMED Projects

780 Third Ave, NY

April 2022© Ventacity Systems, Inc.

Forest Preserves of Cook County

City Center Mall, White Plains, NY


Oak Park Temple and School

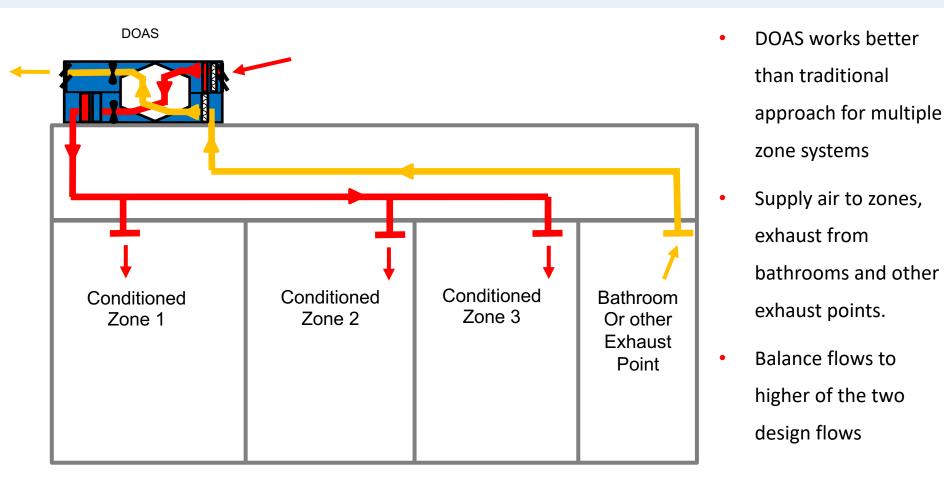
Chapter 6: DOAS (Dedicated Outdoor Air Systems)

Chapter 6: DOAS

Dedicated Outdoor Air Systems

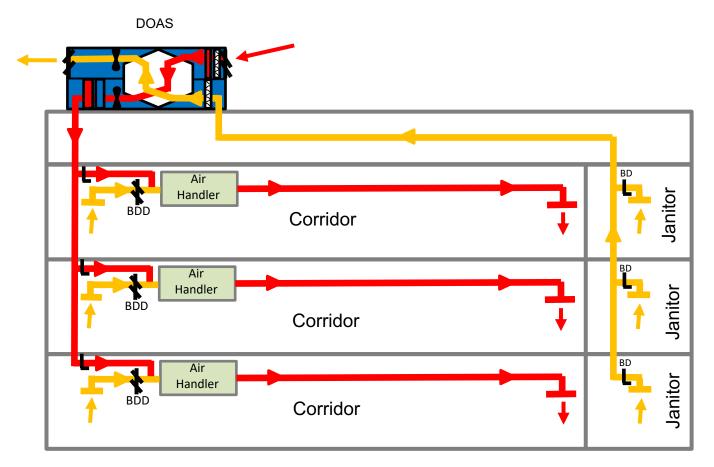
- DOAS ventilation is decoupled from the heating and cooling.
- Supply air is ducted independently to the conditioned zone(s).
- Exhaust air is ducted back to the DOAS H/ERV to recovery energy before exhausting.

Dedicated Outdoor Air Systems (DOAS) Post Conditioning Possibilities


DOAS Bathroom Conditioned Or other Zone Exhaust Point

Post heat exchanger conditioning coils possible for additional tempering to further heat, cool and/or dehumidify OA airstream.

 Sometimes internal to DOAS unit or installed downstream separately.

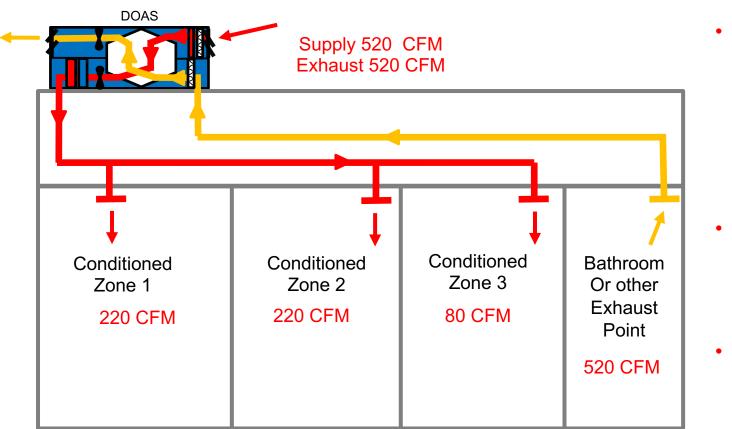

Dedicated Outdoor Air Systems (DOAS) Multiple Zones

Chapter 6: DOAS

Dedicated Outdoor Air Systems (DOAS) Multiple Zones – Connecting to Air Handlers

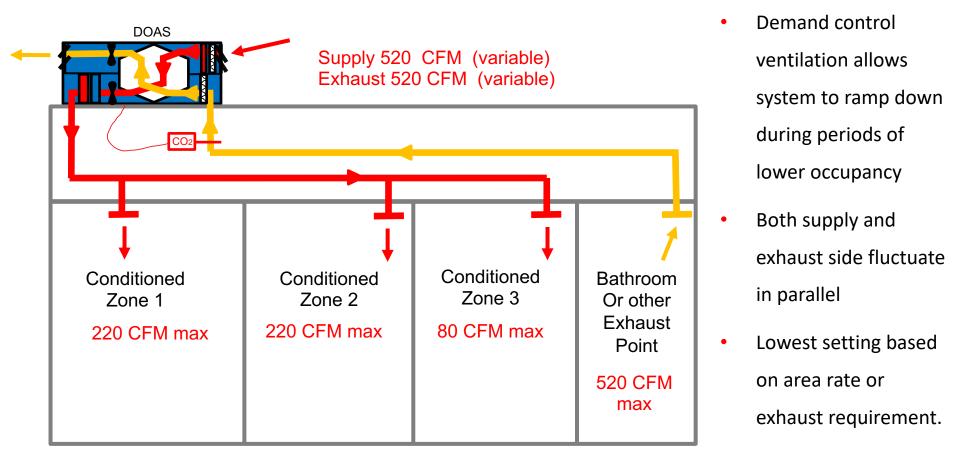
- For simple zones it is possible to connect supply to zone air handlers.
- Include back-draft damper so air flows out the supply network.
- Preferably keep exhaust independent.

DOAS Control Strategies

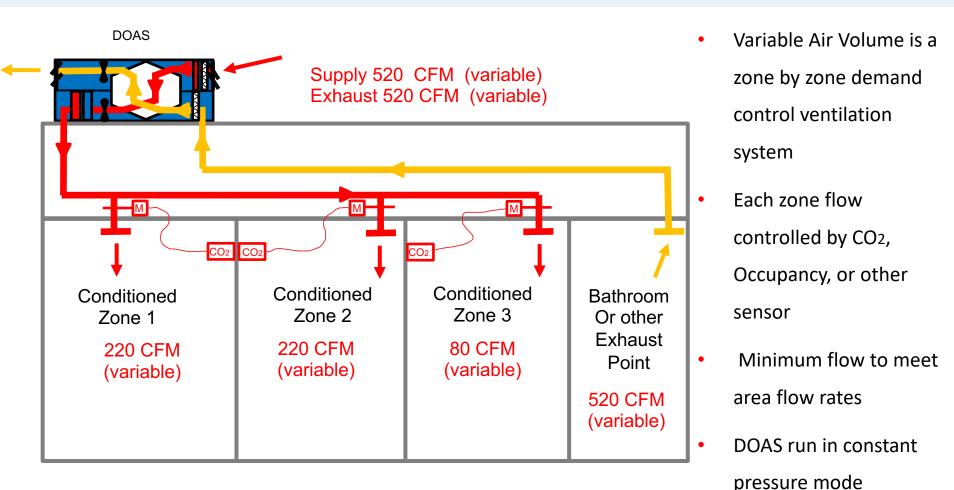

Main Approaches:

- CAV Constant Air Volume
- DCV Demand Control Ventilation
- VAV Variable Air Volume
- Economizer

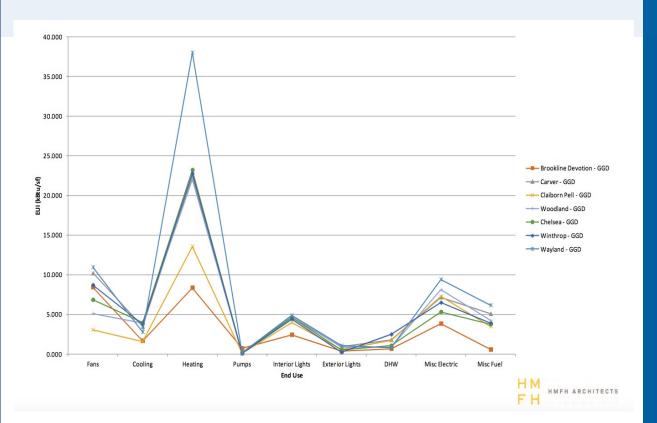
- Multiple strategies for controlling a DOAS from simple to sophisticated depending upon goals and budget.
 - Some brands have flexible and elegant internal controls while others require a BMS system to do anything beyond basic control


DOAS Control Strategies: CAV – Constant Air Volume

- During occupied hours DOAS runs at a constant single rate to meet the design airflows
- During unoccupied hours DOAS is in stand-by mode
- Schedule can be overridden for special events

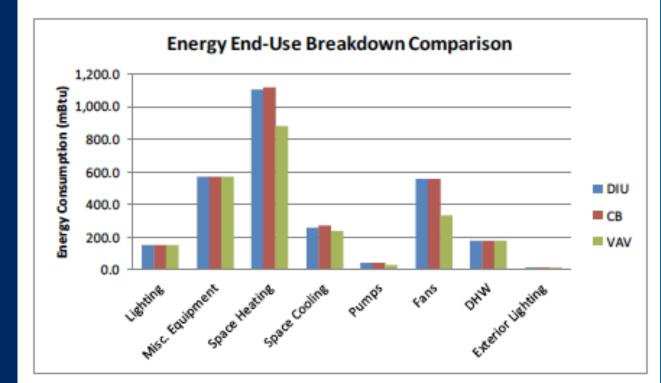


DOAS Control Strategies: DCV – Demand Control Ventilation


DOAS Control Strategies: VAV – Variable Air Volume

Chapter 6: DOAS

THE PATH TO NET ZERO?


EW ENGLAND EFFICIENCY SCHOOLS

- Ventilation energy • buried in HVAC numbers
- **RTUs do not allow for** • **Demand Control** Ventilation
- Cut HVAC load in half, , how many solar panels saved to get to Net Zero?

Making Buildings Healthy - Efficient - Smarter

TYPICAL NUMBERS FOR CONVENTIONAL APPROACHES TO HVAC

FANS STAND OUT

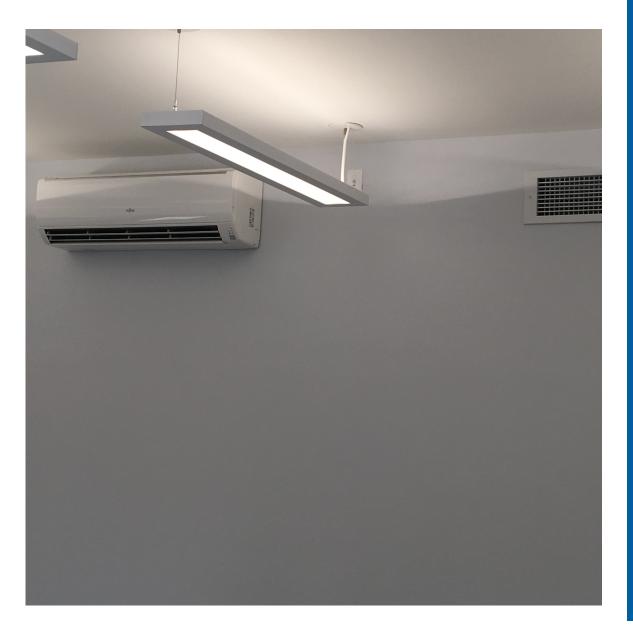
- Fans drive high energy use
- Systems do not allow for Demand Control Ventilation
- Large air volumes require very large ducts

VENTACITYSYSTEMS

Making Buildings Healthy - Efficient - Smarter

San Francisco High School

TMHS - SFUSD Readings Class					Lunch		6800 cu. ft At 430 cfm = 3.8 air changes per hour				
VS500 in Room 218			No class		Mtgs.						
Demand Co	ontrolled Ve	ntilation									
			21	L6	218		218				
Date		Time	Telaire		Telaire			Outside	Return	Supply	
Mode	CFM	of Day	Room T	CO2	Room T	CO2	CO2	Air	Air	Air	Bypass
Wed	160	7:00 AM	70	465	69	417	440	55	68	66	0
5.8.19	171	8:00 AM	70	487	69	421	440	55	68	66	0
DCV	170	8:30 AM	72	715	69	423	440	56	68	66	0
	158	9:00 AM	73	927	69	417	440	57	68	66	0
Mostly	158	9:20 AM	74	1052	69	424	420	58	68	66	0
Cloudy	169	9:50 AM	73	1532	69	437	440	59	68	65	46
in AM		9:55 AM	73	1627							
	169	10:00 AM	74	1669	69	433	460	59	68	65	52
		10:08 AM	74	1727							
	168	10:15 AM	74	1821	69	426	440	59	68	64	60
		10:25 AM		1900							
	203	10:30 AM	74	1958	69	441	460	60	68	63	82
		10:35 AM	74	2001							
	215	10:55 AM	74	2001	70	450	460	61	68	63	100
	221	11:25 AM	75	1291	70	457	480	62	68	64	100
	204	Noon	73	1023	70	461	480	63	68	65	100
	169	12:55 PM	73	824	70	424	440	64	69	65	100
	445	1:30 PM	75	1147	73	635	720	63	72	66	100
	445	1:40 PM	75	1287	73	663	760	63	73	66	100
	445	1:50 PM	76	1349	73	657	740	64	73	66	100
	446	2:00 PM	76	1423	74	659	740	64	73	67	100
	446	2:30 PM	77	1370	75	661	760	64	74	67	100
	222	3:15 PM	75	612	74	461	500	63	73	66	100
	158	4:00 PM	75	549	74	425	440	64	73	67	100


LEED FOR SCHOOLS GOLD CERTIFICATE

- Designed to meet Passive House level of efficiency
- Advanced VHE HVAC systems
- Mixed use, as school during the day, as Community Center during evenings and weekends

VHE HVAC

- Two VS3000 RTe ERVs
- VRF Heat Pumps with heat recovery

CONTROLS ARE THE KEY

- Individual heating and cooling in each space
- Simultaineous heating and cooling with heat recovery VRF
- Demand control for ventilation in each classroom
- Remote access to system for optimizing and managing

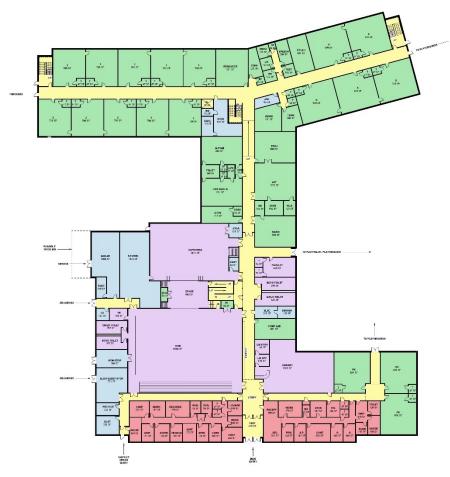
DEMAND CONTROL

- Each classroom monitors CO2, system delivers increased ventilation as needed
- Damper/Diffusers combined with Constant Static controls at the ERV provide needed flows

Chapter 6: DOAS

SIZED FOR OPTIMUM COMFORT AND EFFICIENCY

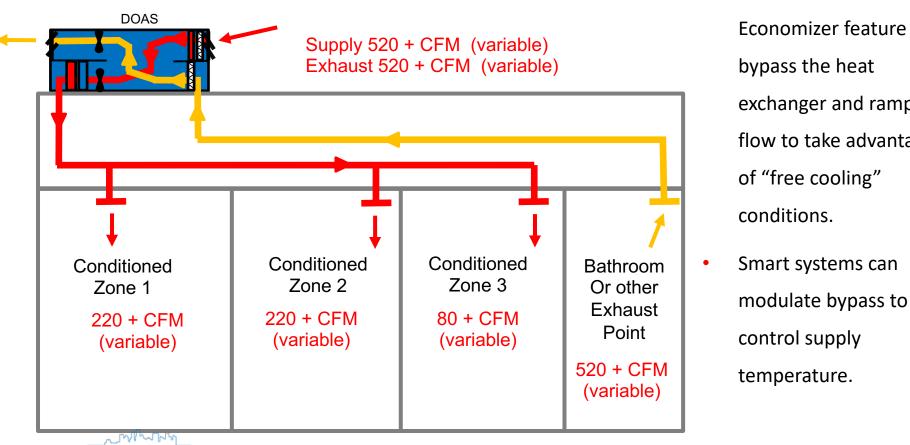
- Upper classrooms utilize ceiling cassettes for H&C
- Damper/Diffusers provide ventilation and optimum IAQ and health


Chapter 6: DOAS

CONTROLS

- Cloud connected SBC100 control platform
- CO2 sensors in each classroom
- Damper/Diffusers
 manage air flow
- VRF system maintains zone control of heating and cooling

Application: Schools



- Classroom Strategies:
- Individual classroom HRVs
- CO₂ Demand control potential
- Minimize ductwork
- Central Systems
- Can use CO₂ demand control with zone dampers
- Possibility for reduced equipment sizing with diversity if not all spaces used simultaneously.
- Quiet equipment operation critical

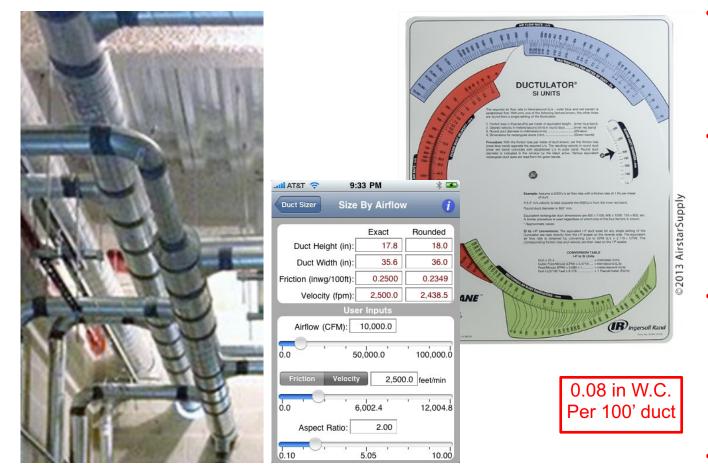
Chapter 6: DOAS

DOAS Control Strategies: Economizer

Economizer feature can bypass the heat exchanger and ramp up flow to take advantage of "free cooling" conditions. Smart systems can

A DOAS with an

VENTACITYSYSTEM


Chapter 6: DOAS

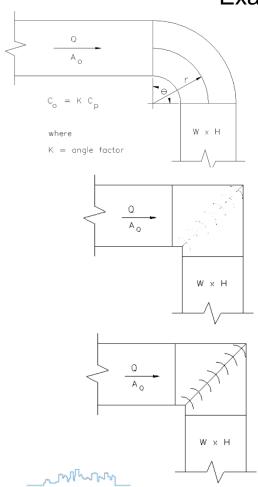
Chapter 7:Duct Design Optimization

May 2020 I © Ventacity Systems, Inc.

Ductwork Design:Duct sizing

- Overall duct sizing done by friction loss for that airflow.
- Good rule of thumb less than 0.08 in W. C. of friction losses per 100 ft of ductwork
- Ductulators (paper or electronic) will have round and equivalent rectangular.
- Round most efficient.

Ductwork Design: Duct sizing


May 2020 I © Ventacity Systems, Inc.

VENTACITYSYSTEMS

• Round ductwork is most efficient for airflow.

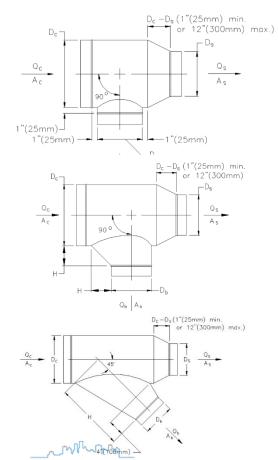
- Rectangular duct can sometimes fit in shallower height.
- Avoid aspect ratios of greater than 5:1 for most efficient flow.

Ductwork Design: Fittings

May 2020 | © Ventacity Systems, Inc.

Example: 12"x12" duct with 800 CFM

Radius Elbow r = 1.5WC₀ = 0.17 $\Delta P = 0.01$ in WG Approx equal to 13' of ductwork


Mitered Elbow $C_0 = 1.18$ $\Delta P = 0.05$ in WG Approx equal to 63' of ductwork

- Selection of fittings can make a big difference in system pressure drop.
- ASHRAE Ductwork Database and related App are good tools for selection and comparison

Mitered Elbow with vanes (1-1/2") $C_0 = 0.11$ $\Delta P = 0.00$ in WG Approx equal to <6' of ductwork Note: wider spacing and/ double Thickness vanes increase ΔP

Ductwork Design: Fittings

Example: 12" Φ duct with 600 CFM and 200 CFM take-off

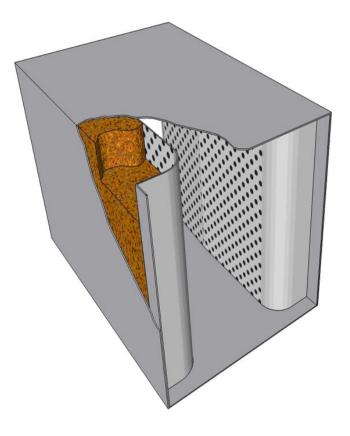
12" x 10" x 8" Fitting

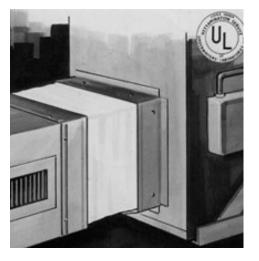
- 90° Straight Tee Branch $\Delta P = 0.04$ in WG Approx equal to 50' of ductwork
- 90° Straight Tee w/ 45° Entry Branch $\Delta P = 0.02$ in WG Approx equal to 25' of ductwork

- Selection of fittings can make a big difference in system pressure drop.
 - ASHRAE Ductwork Database and related App are good tools for selection and comparison
- 45° Conical Wye Branch $\Delta P = 0.01$ in WG Approx equal to 13' of ductwork

Ductwork Design: Air Sealing

- Proper air sealing of ductwork is critical for efficient delivery of air to designed locations.
- Leakage = fans run harder to meet design airflows.
 - Duct blaster testing important for confirmation.
 - A duct is just a pipe for air.Plumbers can make theirpipes 100% airtight!


Ductwork Design: Fire and Smoke Dampers



VENTACITYSYSTEMS

- Stops fire and smoke from moving through the ductwork.
- Required when ducts penetrate a fire rated assembly (with some exceptions).
- Coordinate with architects about what assemblies are fire and/or smoke rated.
- Access panel required for maintenance.

Ductwork Design: Acoustics and Vibration

- It is good design to connect
 ductwork to equipment with
 a flexible connector to isolate
 vibration from ductwork.
 Vibration isolating mounts
 may also be needed.
- Sound attenuation may be useful for critical environments (schools, auditoriums, sound studios)
- Quiet equipment important for high performance buildings
 Chapter 7: Duct Design Optimization

Ductwork Design: Challenges

- Connect through roof with shortest duct/curb possible.
- Avoid bends.
- Reduce or eliminate insulated ducts.
- Minimize leaks.

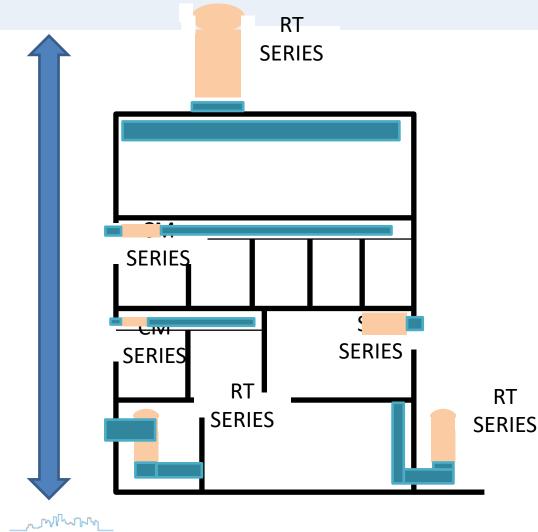
May 2020 I © Ventacity Systems, Inc.

Ductwork Design: Challenges

- Connect through roof with shortest duct/curb possible.
- Avoid bends.
- Reduce or eliminate insulated ducts.
- Minimize leaks.

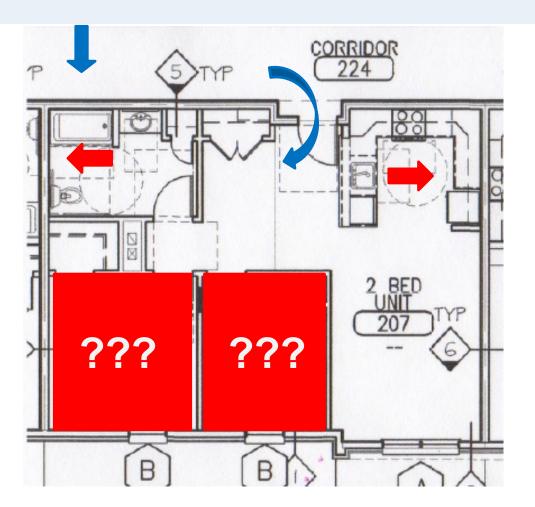
Ductwork Design: Challenges

- Connect through roof with shortest duct/curb possible.
- Avoid bends.
- Reduce or eliminate insulated ducts.
- Minimize leaks.


May 2020 I © Ventacity Systems, Inc.

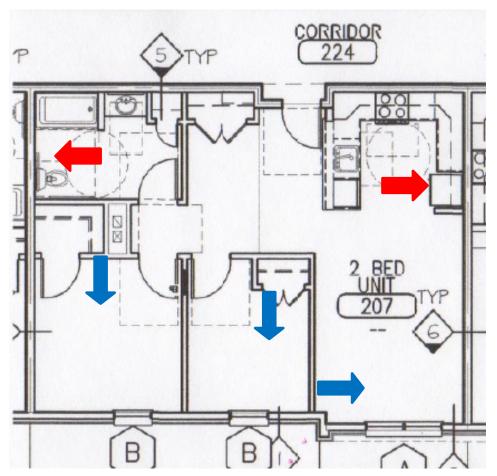
Chapter 8: Applications

Chapter 8: Applications


Mounting for most commercial installs

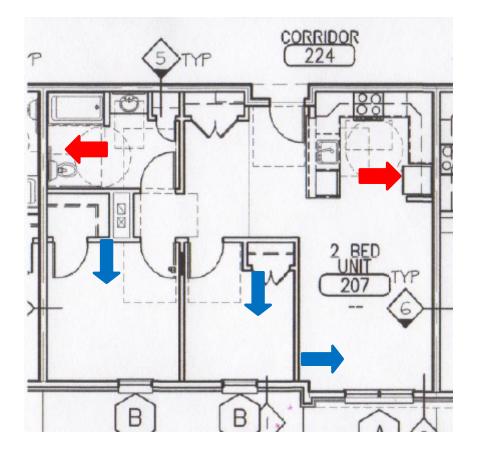
May 2020 | © Ventacity Systems, Inc.

- Rooftop units ready to install outdoor as standard
- Decentralized units are quick and require minimal mechanical installation (no ducts)
- Units can be configured or available in multiple voltages
- HRV or ERV
- CM units are ideal for floor by floor or other drop ceiling installations and have four sizes to choose from
- RT unit also can be ducted in mechanical rooms or outside on stand

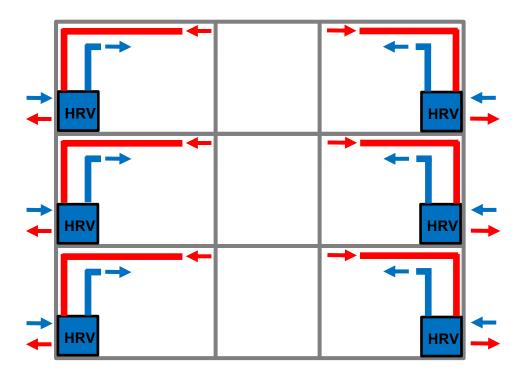

Application: Multifamily Residential Traditional Design

- Exhaust Air Locations
- Bathrooms
- Kitchen

- Supply Air Locations
- Corridors
- What is the ACH in the Bedrooms?

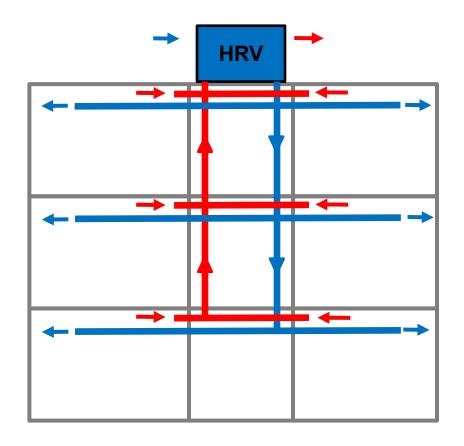

Application: Multifamily Residential Optimized Design

- Exhaust Air Locations
- Bathrooms
- Kitchen
- Laundry
- Moisture/Odor Laden Areas
- Supply Air Locations
- Bedrooms
- Offices
- Living/Family Rooms*
- Remote Rooms
- * Depending upon layout


Application: Multifamily Residential System Options: Example Apartment

- Given Conditions:
- 800 SF TFA (~80 SM)
- 2 Bedrooms
- Living Room
- 1 Bathroom
- 7'x8' Kitchen (56 SF)

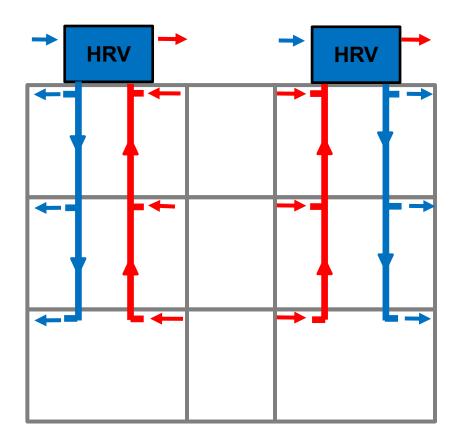
Standard	Supply	Exhaust
PHI	32 CFM	59 CFM
62.2-2013	47 CFM	57 CFM


Individual Apartment Units Pros

- Better Compartmentalization
- Minimize Stack Effect
- Individual Control
- Easy Boost Capacity
- Good for Condominiums
- Minimize Duct Runs
- Minimize energy usage
- Energy paid by occupant

Cons

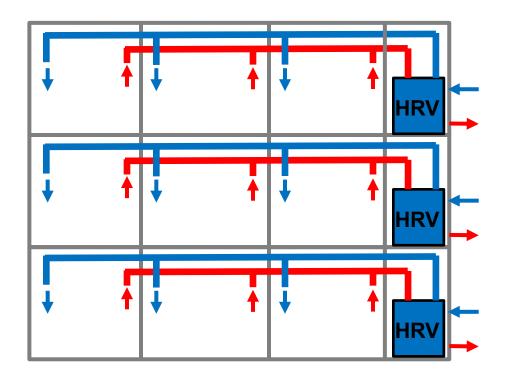
- Multiple Wall Penetrations
- Dispersed Maintenance
- May be more expensive


Central Ventilation Units Pros

- Central Maintenance
- May be less expensive
- Minimize Penetrations

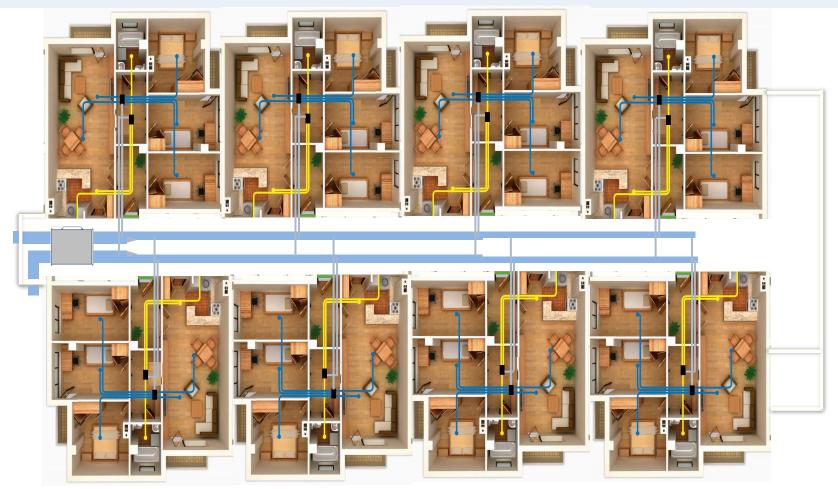
Cons

- Central Ductwork & Fire Dampers
- Fighting Stack Effect
- Loss of Floor Space for Shafts
- More Complex to Boost
- Harder to Balance
- Higher energy usage
- Energy paid by building owner



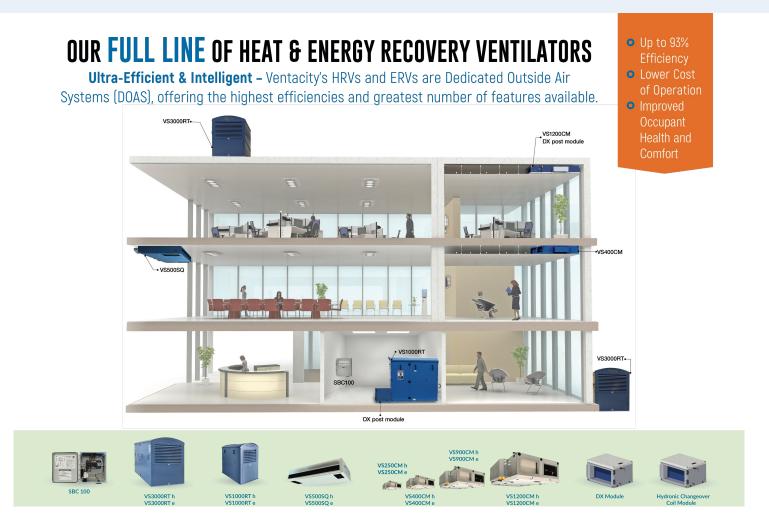
Semi-central Ventilation Units Vertical Configuration Pros

- Consolidated Maintenance
- May be less expensive
- Minimize Penetrations
- Reduce Ductwork
- Reduce Energy Usage Cons
- Central Ductwork & Fire Dampers
- Fighting Stack Effect
- Loss of Floor Space for Shafts
- More Complex to Boost
- Harder to Balance
- Energy paid by building owner


Chapter 8: Applications L42

Semi-central Ventilation Units Horizontal Configuration Pros

- Consolidated Maintenance
- Minimize Stack Effect
- Eliminate Shafts
- May be less expensive
- Minimize Penetrations
- Reduce Energy Usage
- Possibly Eliminate Fire Dampers Cons
- Central Ductwork
- More Complex to Boost
- Harder to Balance
- Energy paid by building owner



Chapter 8: Applications

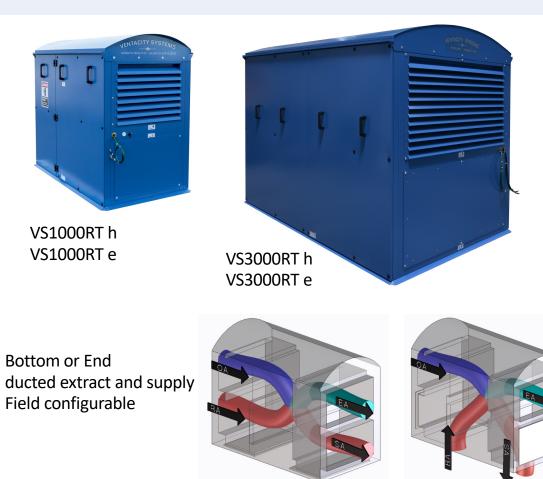
VENTACITY FAMILY PROTFOLIO

FAMILY OF VENTILATION SYSTEMS

- 1. Highest Efficiency
- 2. Highest Intelligence
- 3. Complete Ventilation SYSTEMS
- UL 1812, UL1815, CSA, Passive House certified

Rooftop Hrv/erv units

RT INSTALLATION EXAMPLES



- 1. VS1000RT h for multiple office zones with VRF Ducted Fan Coil System
- 2. VS1000RT h Mechanical Room
- 3. Modeling VS1000RT h on Seattle Ecotope Building

RT SYSTEMS, ROOFTOP OR MR READY

KEY STANDARD FEATURES

- Galvanized and powder-coated for outdoor operation
- Curb or stand mounting
- Domed roof for water shedding
- Insulated double steel wall
- Thermally-broken surfaces between chambers
- Intelligent controls with internal and external sensors enable design flexibility and automated, optimized performance
- UL/CSA listed
- Passive House Certified

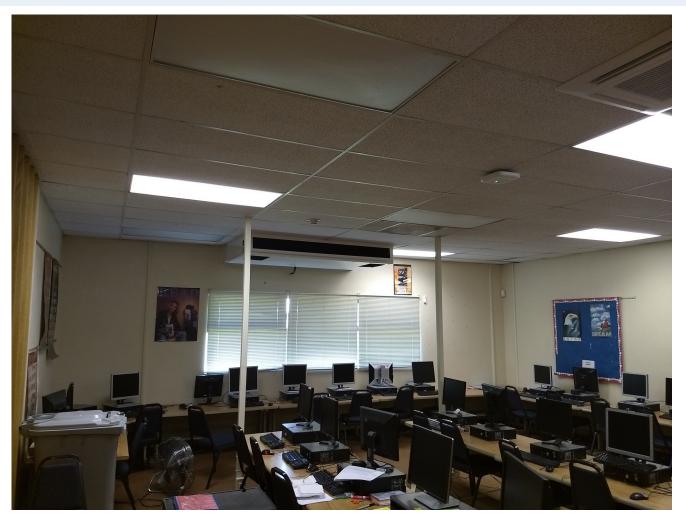
SQ series: decentralized ventilation

SQ SERIES – DECENTRALIZED VENTILATION

VS500SQ h (HRV) VS500SQ e (ERV)

- Simple ductless installation
- Below ceiling mount; optimized to create healthy, comfortable classroom
- No internal ductwork minimizes installation time and cost
- Exceptionally quiet operation:
 - Example L_{PA}=10 dB: A Pin Dropping
 - Example L_{PA}=20 dB: Leaves Rustling
 - SQ Series: L_{PA} =23.6 dB @3M, 50% flow
 - Example L_{PA}=30 dB: A Whisper / Library
 - SQ Series: L_{PA} =31.5 dB @1M, 50% flow
- Standard CO₂ sensor for DCV
- Easy filter access
- Post-conditioning option available
- Great for classrooms; libraries
- UL/CSA Listed

SO ADVANCED THAT ITS SIMPLE



- Simple ductless installation reduces cost and time of install
- Health:
- DCV operation with standard CO₂ sensor maintains superior air quality for health and human performance
- Comfort:
- Very low air velocity at student level
- Comfortable fresh air temperature through high recovery effectiveness

NYCSCA PILOT TEST INSTALL

HILLSBORO, OR INSTALLATION

HILLSBORO, OR INSTALLATION

HILLSBORO, OR INSTALLATION

WINDHAM, ME UNIT VENTILATOR UPGRADE

WINDHAM, ME UNIT VENTILATOR UPGRADE

WINDHAM, ME UNIT VENTILATOR UPGRADE

CM SERIES: slim members of the family

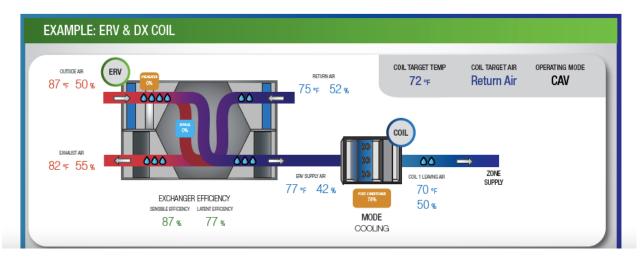
CM SERIES – SLIM LINE INDOOR UNITS

VS900CM h VS900CM e

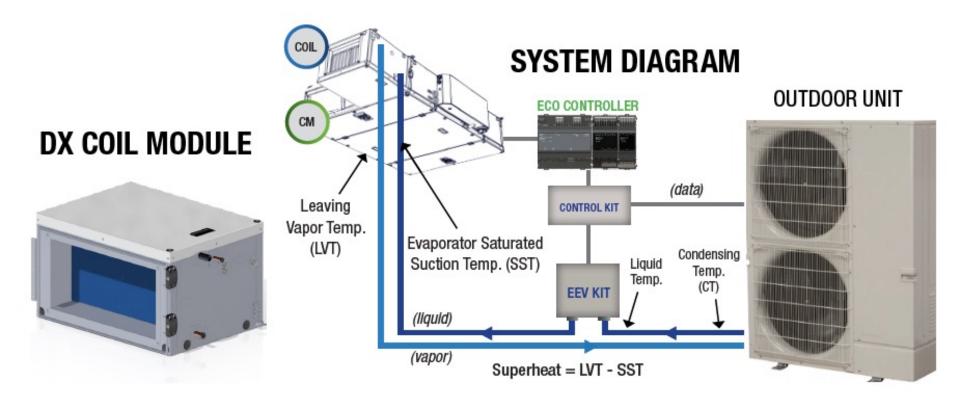
VS1200CM h VS1200CM e

- Typically mounted above T-bar ٠ drop ceiling
- Installation similar to ducted fan coils
- Ideal for multi-level office or • multi-tenant
- Part of the Ventacity family-٠ complete system with features common to all
- Accessory post conditioning modules
- Best of distributed and centralized world
- Can be remotely monitored, managed and optimized
- UL/CSA listed ٠

CM series accessory: DX Module couples to SA duct


CM Series accessory: Hydronic Changeover Coil Module

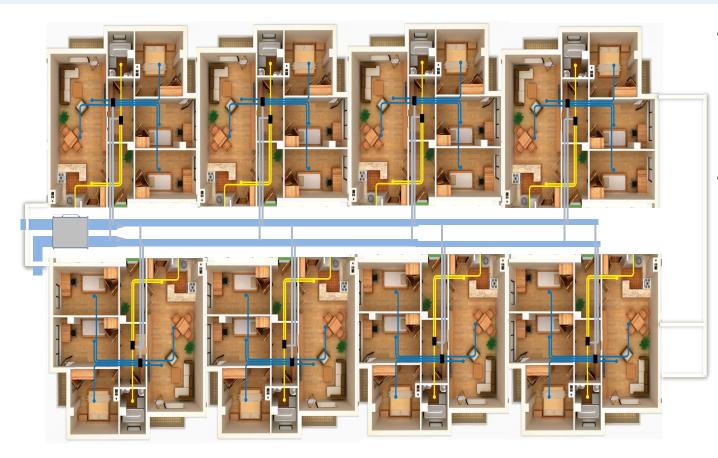
DX Option for VS UNITS



VS1200CM, VS900CM, VS400CM, VS250CM, VS1000RT*, and VS3000RT.

- DX coils are compatible with VRF systems.
- ECO Controller: Energy Conserving Orchestration. Used for added features (see following pages).

INTEGRATED CONTROLS



*NOTE: VS1000RT-DX is the VS1200CM-DX

DX and Changeover hydronic kits

Easy Installation
 Seamless Controls
 Right Sized

CM SERIES – EASY INSTALLS, OPTIMIZED OPERATION

- Multi-level installation coupled with SBC100 makes easy tracking, control, and maintenance
- HVAC² solution of CM series plus efficient VRF heating/cooling maximizes efficiency, comfort, and health

BUILT-IN "SMART" ECONOMIZER

FREE COOLING/ECONOMIZER

- INTEGRATED
- MANAGED TO A
 DELIVERED TEMPERATURE
 SETPOINT
- CONTINUOUSLY VARIABLE
- SCHEDULE FLEXIBILITY

THANK YOU, from all of us at www.Ventacity.com! barry@ventacity.com 603-498-9005