

Results from a Net-zero Feasibility Study for Warm Springs Community Center *High Performance Design Training* May 8, 2018

About us

Independent nonprofit organization dedicated to helping utility customers invest in and benefit from energy efficiency and clean, renewable power.

We provide:

- Information
- Technical services
- Engineering studies
- Cash incentives
- Contractor connections

A clean energy power plant

607 average megawatts saved

121 aMW generated

52 million annual therms saved

Enough energy to power **564,000** homes and heat **100,000** homes for a year

Avoided 20 million tons of carbon dioxide

Energy Trust New Buildings

- New construction
- Major renovation
- Tenant build-out
- Additions or expansions

Training and education opportunities

- Allies for Efficiency
- Building Energy Simulation Forum
- High Performance Design Trainings
- Special events
- Event partnerships and sponsorships

FREE trainings for industry audiences statewide. Webinar options and continuing education credits often available.

energytrust.org/commercial/commercial-training-events/

Building Energy Simulation Forum upcoming trainings

June 20, 2018 Net Zero Fellowship 2017 Results

Upcoming sponsored trainings

May 23, 2018 - Newberg, OR AEE: Chehalem Parks & Recreation Aquatic Center Building Tour

Commercial Training And Events

Boost your knowledge with Energy Trust's continuing education opportunities and special training events. Trainings include real-world examples, case studies, and detailed technical information presented by experts from the fields of architecture, engineering, construction and development, as well as specialists in a variety of building types and market sectors. Attendees may be eligible for continuing education units, CEUs.

Find Upcoming Trainings and Events

energytrust.org/commercial/commercial-training-events

2018 Net Zero Fellowship

- Up to two fellowship grants, not to exceed a combined total of \$50,000, to support net-zero energy research over 12 to 18 months
- Funding for new research to advance design best practices, technologies and policies, and the overall net-zero community in Oregon
- Application deadline May 31, 2018
- Learn more at energytrust.org/zero

Questions?

For more information about:

- Upcoming trainings
- Education opportunities
- Becoming an Energy Trust New Buildings Ally

Contact kirsten.vogel@clearesult.com

Thank you

Kriya Kaping Market Outreach Specialist kriya.kaping@clearesult.com (503) 467-0892

Warm Springs Commissary Renovation Case Study

May 8, 2018

WALKER | MACY HACKER

Contents

Introduction to WSCAT and Commissary Major Stakeholders Community Design Process

Design Documentation

Getting to Net Zero

Project Team

Architect **Hacker** 733 SW Oak Street Portland, OR 97205

Landscape Architect Walker Macy 111 SW Oak Street, Suite 200 Portland, OR 97204

Cost Estimator DCW Cost Management 220 NW 8th Avenue Portland, OR 97209

Mechanical and Electrical Engineers **PAE** 522 SW 5th Ave #1500, Portland, OR 97204

Structural Engineers **KPFF** 111 SW Fifth Avenue, Suite 2500 Portland, OR 97204

Warm Springs Community Action Team

The Warm Springs Community Action Team (WSCAT) is a non-profit community development organization located

and effect positive change for themselves, their families,

-Individual Development Program (IDA) -Financial Empowerment

Chris Watson, Executive Director

Project Vision

The scope of this project is to re-purpose an existing building to be a new, Net Zero Energy building. Self-reliance and sustainability are major goals for the Warm Springs community. However, these goals are difficult to achieve with many reservation projects due to lack of funding. The approach of this project is to provide a small step that can be easily implemented, is repeatable, and can serve as an example for future projects.

This project includes studying the feasibility of renovating and relocating an existing historic building in the downtown area of Warm Springs, Oregon. The existing building, the Old Commissary, will be placed on a new foundation, and remodeled.

The primary program of the renovated Commissary will be a small business incubator, which will occupy the second floor of the building. The incubator will provide services and work space to help jumpstart small businesses within the community. The first floor of the building will provide other amenities for the community, and site improvements will focus on connecting the building to an outdoor seating and food truck area.

The Commissary Building

Major Stakeholders

THE

FOUNDATION

INS

Community Design Process

History to Date

1890s Commissary Built

- 2005 ODOT Local Street Network & Campus Area Plan
- 2005 Warm Springs Downtown Development Plan

- 2016 BIA transfers ownership to CTWSO
- Summer 2016 Community Open House
- Winter 2016 Tribal Council Meeting
- Tentative Construction Completion end of
- year 2018
- (Predicted 9 month construction period)

Community Feedback

A community workshop was held on May 8, 2012 as part of the Town Center Property Summary. The following themes from this study could potentially be fulfilled at the the Commissary Building.

-amphitheater
-artist's coop
-barber
-buildings that tell a story
-business opportunities
-coffee and newspaper
-community-focused
-connection to nature
-dancing
-eco-friendly structures
-farmer's market
fountains
-fresh produce
-interesting and fun

Did we miss something? Let us know here...

- -like the old campus
- -live music
- -local crafts
- -local food
- -maintain existing green space
- -mature trees and shade
- -open air market
- -serves locals and visitors
- -tribal history
- -street lighting
- -understated simplicity

What is a Small Business Incubator?

Gaucho Collective

- -Coworking Space in Klamath Falls -Common work areas: laptop bars + community table
- -Available Kitchenette
- -Printer Copier Scanner
- -Meeting room with projector
- -Lockers for rent
- -Secure building access
- -WiFi included
- -Open style desks
- -Dedicated desks with storage
- -Dedicated desks with filing cabinet -Bookable conference room

Other Nearby Coworking Spaces

- SistersTECH 178 S Elm St, Sisters
- The Wilds 30 SW Century Drive #120, Bend
- BendTECH Coworking 1001 S Emkay Drive, Bend

- High Desert Maker Mill 213 SW Columbia St, Bend
- SCORE Business Incubator 922 NW Circle Blvd, #160 Corvallis
- WeWork Portland 220 NW 8th Ave, Portland

MAKER SHOP

MIXED OUTDOOR SEATING

Building Inspiration Images

PUBLIC PLAY SPACE

Site Inspiration Images

Community Design Process - Feedback Community Engagement / September 2016

Community Design Process - Feedback

Art Studio 2

program votes

Project Goals

- Communal hub
- Landmark
- Economic generator
- Flexible and adaptive design
- Self-reliant
- Sustainability

Building Program

- Maker space
- Retail barber shop, vendor
- Indoor-outdoor cafe
- Community kitchen
- Open office space
- Meeting spaces
- Food Carts and shaded seating area

Design Documentation

Site Diagram

Site Planning Considerations:

- Highway access and visibility
- Connections to town center
- Connections to Park .
- Position for future development •
- Solar access .
- Daylighting
- Consolidate high energy use programs

	pedestrian routes
	accessible routes
	auto routes
_/	
	to town
10 Sec.	center

Site Plan

Section A

Section B

High Performance Envelope Goals

Retrofitting a 19th century envelope for Net Zero Energy

- Energy modeling
- Durability
- Air tight assembly
- Detail transitions to control air infiltration
- Continuous exterior insulation
- Minimize thermal bridging
- Improve window performance
- Balance performance and economy

Exterior of structure:

- Rainwater control layer
- Air control layer
- Vapor control layer
- Thermal control layer

The Perfect Wall, Joseph Lstiburek

High Performance Envelope

Wall Assembly **R-19 + R-15**ci Walls Below Grade **R-10**ci Roof Assembly

R-50ci

Window U-Factor

U- 0.27

Air Infiltration

0.15 cfm/sf

Plan

2-1/2" POLYISO

8" FIBERGLASS

EXISTING WOOD SIDING

VERTICAL PT FURRING

POLYISO RIGID INSULATION

WEATHER BARRIER

VAPOR PERMEABLE (TYVEK DRAIN WRAP)

PLYWOOD SHEATHING

BATT CAVITY INSULATION

SALVAGED WOOD PLANKING ON INTERIOR WALLS

High Performance Envelope

Wall Assembly

R-19 + R-15ci

Walls Below Grade

R-10ci

Roof Assembly

R-50ci

Window U-Factor

U- 0.27

Air Infiltration

0.15 cfm/sf

BUG SCREEN EXISTING FLOOR ASSEMBLY PAINTED SHEET METAL FLASHING

SILL SEALER STAINLESS STEEL FLASHING BITUMINOUS DAMPPROOFING 2" EXTRUDED POLYSTYRENE (XPS)

12" CONCRETE NEW SLAB ON GRADE 2" XPS High Performance Envelope

Wall Assembly **R-19 + R-15**ci Walls Below Grade **R-10**ci

Roof Assembly

R-50ci

Window U-Factor

U-0.27

Air Infiltration

0.15 cfm/sf

EXISTING TRUSS

VINYL WINDOW

Getting to Net Zero

The Cycle of EUI Goal Setting and Design

Climate Analysis | NORMAL ENVELOPE

TEMPERATURES

ACTIVE
COOLING
ZONE
971 HRS
10%

800	SAI
600	ЮH

1000

1200

1400

Climate Analysis | PASSIVE ENVELOPE

TEMPERATURES

Climate Analysis | BALANCING HEAT LOSS

Balance Point Temperature

Lighting Power Densities and Plugloads for Various Space Types

LEGEND

Lighting Power Density

Plugload

Space Schedules

OFFICE, BOOKKEEPER'S OFFICE, MANAGER'S OFFICE

Loads

- Lighting power density = 0.6 watts/square foot; full daylighting; occupancy/vacancy sensors
- Assumed equipment: 1 copier/printer (incubator office only), laptop computers.
- Plugload density: 0.5 watts/square foot

Lighting Schedule

Equipment Schedule

Occupancy Schedule

Design Elements to Achieve NZE

Design Elements to Achieve NZE

Energy Breakdown by End-Use

LEGEND

- PV Production Budget
- Food Carts
- Domestic Hot Water
- Vent Fans
- Space Cooling
- Space Heating
- Plug Loads
- Lights

PV Required for Net Zero Energy

Cost Estimate | cost difference per SF FROM BASELINE TO PROPOSED DESIGN

Next Steps

PASSIVE COOLING

METERING

ENERGY STORAGE

W DREW COLLABORATIVE WORKS WALKER MACY HACKER

