

Strategies + Synergies

RESILIENCE, PASSIVE DESIGN, & SMART GRID OPTIMIZATION

Presented by: Forest Tanier-Gesner PE | PAE Engineers

- Not all EUIs are created equal: participants will learn about the time-of-use implications of energy relative to its global warming impact and applications to projects.
- Emerging technology: participants will learn about new trends in energy storage and how this can be integrated into renewable energy systems for better payback and resiliency.
- Participants will learn how passive design strategies relate to a building's load profile and therefore it's impact on both global warming and resilience.
- Participants will learn about strategies to address resilience for critical facilities and general office buildings, including continuity of operations during extreme circumstances.

WHAT IS A GRID-INTEGRATED BUILDING?

Grid-Integrated Buildings have a holistically optimized blend of energy efficiency, distributed energy generation, load flexible technologies/smart controls, and energy storage.

- Create a lower, "flatter", more flexible energy load profile
- Have flexible demand
- Are more resilient and productive
- Optimize capital investments
- Reduce operating costs
- Provide access to new revenue for both building owners and utilities

ZERO ENERGY WITH AND WITHOUT GRID INTEGRATION

Courtesy: NREL, RMI

GRIDOPTIMAL. BUILDINGS INITIATIVE

https://newbuildings.org/gridoptimal/

Owner's Goals

PROGRAMMATIC & FUNCTIONAL REQUIREMENTS

- Continuous operations
- Security
- Eliminate single points of failure

ORGANIZATIONAL & EMPLOYEE NEEDS

- Employee recruitment & retention
- Health & wellbeing
- Productivity

RESOURCE USE

- Minimize operational cost
- Reduce carbon footprint
- Accountability & value to stakeholders

Climate + Site Analysis

SI TE SELECTI ON

OPPORTUNITIES

CHALLENGES

NORTHWEST CLIMATE

STRATEGIES FOR EFFICIENCY Battery CO2 Impact

Modes of Operation

Resiliency design for daily and disruptive events

NORMAL

TEMPORARY & LONG TERM OUTAGE

Operations Budgets

Employee Comfort

Power Supply

Disruption

Earthquake

Security Breach

Modes of Operation

NORMAL vs POST DI SASTER

	Normal Mode of Operation	Post-Disaster Mode of Operation
OCCUPANTS	Normal Business Hours After Business Hours Fully Occupied Critical Staff Only	All Hours Critical Staff Only
THERMAL COMFORT	68°F to 75°F	65°F to 80°F
VENTI LATI ON	Automated	Manually Available
LI GHTI NG	Fully Available	Reduced Levels
ELECTRI CAL POWER	Fully Available	Reduced Levels

Load Reduction

HOW WE REDUCE LOADS

Massing

Orientation

Daylighting

Solar Control

Operable Windows

Natural Ventilation Shafts

Heat Recovery

Economizer

Thermal & Infiltration Performance

Thermal Mass

Demand Control

Backup Power

Generators & Fuel Storage

and the second

Microgrid + Energy Storage

SHORT-TERM OUTAGE

NORMAL

Generator Utility Microgrid Controller Energy Storage Discourse Di

PV & Energy Storage Disabled **During** Outage

LONG-TERM OUTAGE

PV & Energy Storage Disabled After Outage

Peak Shaving

System Sizing

HOW DOES BUILDING DESIGN AFFECT THE SIZING OF SYSTEMS?

Resiliency for Non-critical Buildings

Internal Benefits

MAINTAIN STAFF PRODUCTIVITY

MAINTAIN BUSINESS OUTPUT SUPPORT STAFF Sanctuary in an event SUPPORT BRAND Perception as Community Support

Office Building Example

stats 58,000 SF 4 Floors of Office 1 Floor Retail

велснмаякs Living Building Net Zero Energy & Water

ENERGY

- 19 EU
- 325 kW PV Array for Net Zero Energy
- 160 kWh Battery required for LBC

PASSIVE FEATURES

- High performance envelope
- Manual and automatic windows
- All occupied spaces within 10' of an operable window
- Designed for maximum daylighting

Passive Opportunities,

Climate Analysis | Temperature Bins Portland

Passive Opportunities,

Climate Analysis | Temperature Bins Portland

Passive Design

—

Curtailment Strategies

DAYS AT RISK OF AN EMPTY BATTERY WHEN ISLANDING

NO CURTAILMENT, NET ZERO WITH LBC-SIZE BATTERY (160 KWH) 8 Resilient Workdays \$14,000/Day

/1/2018	2/1/2018	3/1/2018	4/1/2018	5/1/2018	6/1/2018	7/1/2018	8/1/2018	9/1/2018	10/1/2018	11/1/2018	12/1/2018
/ 1/ 2010	2/1/2010	0/1/2010	1/ 1/ 2010	3/1/2010	0/ 1/2010	,, 1, 2010	0/1/2010	5/1/2010	10/1/2010	11/1/2010	12/1/2010

DAYS AT RISK OF AN EMPTY BATTERY WHEN ISLANDING

	INCREASE BATTERY FROM ILFI MINIMUM TO ABOUT ½ OF TYPICAL DAILY LOAD 1,000 kWh 210 Resilient Workdays \$3,300/Day
1/2018 2/1/2018	3/1/2018 4/1/2018 5/1/2018 6/1/2018 7/1/2018 8/1/2018 9/1/2018 10/1/2018 11/1/2018 12/1/2018

DAYS AT RISK OF AN EMPTY BATTERY WHEN ISLANDING

Emissions from Annual Operation

Energy Efficient office Building, PacifiCorp West Grid Profile 114 Metric Tons

Energy Efficient office Building, PacifiCorp West Grid Profile NZE solar with 5% buffer: net CO2 benefit annually - 5 Metric Tons

Energy Efficient office Building, PacifiCorp West Grid Profile With 250 kWh battery -5 Metric Tons

Business Continuity Takeaways

Curtailment is a critical element to broad resiliency. The most impactful curtailment measures are Passive Design features.

LOW LOADS

Acceptable comfort without conditioning

DAYLIGHTING

Critical Facility Smart Grid Integration

Annual Energy Use Profile

25000 Curtailment Strategies: 20000 IN NON-CRITICAL ZONE Lights off 15000 Daily kWh Used Temperature set back Ventilation off 10000 Plug loads reduced to laptops only 5000 BOTH CRITICAL/NON-CRITICAL 0 Elevator not used 1/1/2018 2/1/2018 3/1/2018 6/1/2018 11/1/2018 12/1/2018 4/1/2018 5/1/2018 7/1/2018 8/1/2018 9/1/2018 10/1/2018

 Only cold domestic water

Typical Use Curtailed

Date

Critical Facility Energy Profile

average days between diesel refills 33 Days

Critical Facility Energy Profile

DAYS AT RISK OF AN EMPTY BATTERY WHEN ISLANDING

Critical Facility Energy Profile

........

DAYS AT RISK OF AN EMPTY BATTERY WHEN ISLANDING

			1 N 20 3 \$	crease batt ,000 kWh 65 Resi 73,000,	rery to on lient V /Day	ie full day: Vorkdays
			аv З	erage days 65 Days	between S	DIESEL REFILLS

Critical Facility Takeaways

Net Zero Array is not likely to give you resilience on its own in a critical facility.

Integrated with a generator, the PV array can significantly increase runtime before tank refills are needed.

Critical Data Center, PacifiCorp West Grid Profile 2700 Metric Tons

Critical Data Center, PacifiCorp West Grid Profile -110 Metric Tons

Critical Data Center, PacifiCorp West Grid Profile 7,500 kWh Battery -53 Metric Tons

Battery Impact Takeaways

Looking at the building alone in this utility district, operating the battery to optimize CO2 impact is not effective.

The battery does have the ability to significantly reduce the peak load, improving the utility-scale impact.

Acknowledgments

Marc Brune | PAE Engineers Ruwan Jayaweera | PAE Engineers Mark Perepelitza | SERA Architects Inc. Margo Rettig | SERA Architects Inc. Ralph DiNola | New Buildings Institute

SERA

nbi new buildings institute

Questions?