Sustainable and Resilient School Design

Richard Steinbrugge, PEKent Yu, PhD, PE, SEJay Raskin, FAIAExecutive Administrator for FacilitiesSEFT Consulting GroupJay Raskin ArchitectBeaverton School DistrictSert Consulting GroupSert Consulting Group

The Oregon Resilience Plan

50-year Comprehensive Plan

Cascadia Earthquake Scenario
Business/Workforce Continuity
Coastal Communities
Critical & Essential Buildings
Transportation
Energy
Information and Communication
Water & Wastewater

- Save Lives, protect our economy, and preserve our communities;
- □ 169 Expert Volunteers;
- □ \$ Millions in donation of professional services over a year

Oregon Seismic Hazard

modified hom Weaver and Sheckock, 1996

Oregon Seismic Hazard

(Modified from Goldfinger et al. (in press) by adding magnitude estimates and some labels)

Definition of Resilience

 The ability to *prepare for* and *adapt to* changing conditions and *withstand* and *recover rapidly* from disruptions (from PPD-21)

ORP Key Findings

- Oregon is far from resilient to the impact of a great Cascadia earthquake today
 - Casualties (a few thousand to more than 10,000)
 - Economic Loss (at least 20% state GDP) ٠
 - More than one million truck loads of debris ٠
- Liquid Fuel vulnerability

ORP: Current Recovery Challenges

Critical Services	Zone	Estimated Average Recovery Time	
Electricity	Valley	1 to 3 months	
Drinking Water	Valley	6 months to 1 year	1
Sewer	Valley	1 to 3 years +	E.
Top-priority Highways	Valley	6 to 12 months	

Oregon Education & Emergency Facilities

Building Performance Gaps

	Critical Building Category	Zone	Estimated Average Recovery Time	Resilience Target
	Healthcare Facilities	Valley	18 months	Immediate
	Police and Fire	Valley	2 to 4 months	Immediate
	Emergency Shelter	Valley	18 months	72 hours
	Schools	Valley	18 months	30 days (60 days*)
	Housing	Valley	3 days**	72 hours

* 30-day timeframe is preferred but a 60-day is also acceptable.

** Underestimates recovery for older construction

Beaverton School District

- 3rd Largest in Oregon; 40,000 students
- \$680 Million Bond Program
 - Passed in May 2014; 8-year program
 - Modernization; New Capacity; Technology
- New Capacity Construction
 - High School
 - Middle School
 - K-5 Elementary School
- Replace four outdated Schools
 - Hazeldale, Vose and William Walker K-5's Arts & Communication Magnet Academy

Beaverton School District Bond Program

Schools Serve as Shelters

Stakeholder Workshop

- Local Emergency Response
 - American Red Cross
 - Washington County Emergency Management
 - TVFR, City of Beaverton
- Lifeline Service Providers
 - Electricity (PGE) and Gas (NW Natural)
 - Water (City of Beaverton, TVWD) & Wastewater (Clean Water Services)
- Beaverton School District
 - District Administration and Project Managers
 - Design team for High School (Bora Architects)
 - Design team for Middle School (Mahlum Architects)
- State Agencies
 - Oregon Emergency Management
 - Portland Metro Regional Solutions

Day-Long Stakeholder Workshop

Workshop at Tualatin Valley Fire & Rescue Command & Business Operations Center February 10, 2015

Name	Participant's Affiliation
Jerry Abdie	KPFF Consulting Engineers
Bruce Barney	Portland General Electric
Aaron Boyle	Beaverton School District
Mike Britch	Tualatin Valley Water District
Brian Butler	Interface Engineering
David Chesley	Interface Engineering
Nate Cullen	Clean Water Services
Tiffany Delgado	Portland General Electric
David Etchart	Beaverton School District
Clint Fella	Oregon Office of Emergency Management
Karl Granlund	Beaverton School District
Jim Harold	Bora Architects
Scott Holum	Interface Engineering
Leslie Imes	Beaverton School District
Ruwan Jayaweera	PAE Engineers
Scott Johnson	Beaverton School District
Siobhan Kirk	Tualatin Valley Fire & Rescue
Michael Kummerman	NW Natural
Bobby Lee	Portland Metro Regional Solutions
Steve Muir	Washington County Emergency Management Cooperative
Michael Mumaw	City of Beaverton
Patrick O'Harrow	Beaverton School District
Curtis Peetz	American Red Cross
Scott Porter	Washington County Emergency Management Cooperative
Jeff Rubin	Tualatin Valley Fire & Rescue
Dick Steinbrugge	Beaverton School District
Brandon Watt	PAE Engineers
Dave Winship	City of Beaverton
Kurt Zenner	Mahlum Architects

New Middle School at Timberland

- 2-story
- 165,000 SF
- 1,100 Students
- \$46M (Bldg. Hard Cost)
- Groundbreaking May 2015
- Completed July 2016
- Swing School for Replacements

Structure Strategy

- Risk Category IV Structural/Seismic Design
 - Code Requirement Category III
- Non-structural Components
 - Equipment (required to operate after EQ) seismically certified
 - Components required for use as shelter: Category IV seismic bracing
 - Others: Category III seismic bracing

Structural Typical Braced Frame

Water & Waste Water Strategy

- Restrained pipe joints between city lines and building
- Stub-out water connections for exterior tanker supply:
 - Kitchen
 - Locker rooms & showers
 - Drinking fountains in common spaces
 - Restrooms serving dining / commons
- Seismic bracing of building plumbing per Category IV
- Short Term: Others to provide portable toilets

Power & HVAC Strategy

- Emergency Power
 - 500 KW generator; 96-hour fuel storage
 - Supplemented with solar PV system
 - Power for lighting and ventilation in entire school
- Heating & Cooling
 - Assume no natural gas service: jackets / blankets
 - Natural ventilation: doors, windows, and exhaust fans

Gas & Telecom Strategy

- Natural Gas
 - Seismic shut-off valve to reduce potential fire hazard
- Telecommunication
 - Emergency Management agencies to bring in portable communication systems
 - Beaverton School District radio system

New Middle School

Added Cost: ~ 1.7% of Building

Middle School Resilience Features	Cost Estimate
Design building structure's lateral-force resisting system for seismic Risk Category IV	\$310,000
Provide 500 kW emergency generator with 96-hour run time fuel storage. Emergency generator, switch gear, ventilation fans, and other equipment that is expected to be operational after an earthquake should satisfy the special certification requirements of ASCE 7-10, which is referenced by the OSSC	\$400,000
Provide electrical service to power lighting and ventilation fans in common areas and gymnasium on emergency power; heating is only provided for the commons, gymnasium, administrative wing and locker room area, does not provide conditioned air	Included in Total
Provide quick-connect stub-outs at building exterior to allow use of portable water tank and associated pump to supply water to key building areas: kitchen, locker rooms & showers, and drinking fountains in common spaces	\$20,000
Provide two electrical outlets in kitchen on emergency power to allow hot plates for water boiling, etc.	\$5,000
Provide natural gas seismic shutoff valve at meter	Negligible
Provide hardened water service line from TVWD water line to building	TBD
Provide hardened sanitary sewer service line from CWS sewer line to building	TBD
Provide seismic bracing/anchorage design of nonstructural components based on Risk Category III requirements except that those components required for use of the school as emergency shelter (as specified in Sections 6.5 and 6.6) satisfy Risk Category IV requirements	Negligible
Approximate Total	\$750,000

Project Challenges

- Budget Challenge
 - No allowance for resilience features in original budget
 - Lack of financial partners
- Schedule Challenge
 - Design team started a few months before resilience planning consultants were retained
 - Resilience features finalized by end of SD phase

Key Elements for Project Success

- Vision and Leadership
 - Internal Champion and advocates
 - Board's Support
- Project Managers and Design Teams
 - Internal Engagement
- Community Stakeholders
 - External Engagement

Questions & Follow-up

Kent Yu, PhD, PE, SE Email: <u>kentyu@seftconsulting.com</u> Phone: (503)702-2065

Richard Steinbrugge, PE Email: <u>Richard_Steinbrugge@beaverton.k12.or.us</u> Phone: (503) 356-4449

New Beaverton Middle School a more resilient community

BibBB

Kurt Zenner AIA LEED AP

Mahlum is committed to creating healthy and enduring communities to support the lives of future generations.

02016 MAHLUM

New Beaverton Middle School

間であるには

1000 B

R:RAA

New Beaverton Middle School 1100 students 167,000 sf (includes covered play) 16 acres

New Beaverton Middle School 1100 students

R:RAA

167,000 sf (includes covered play)

16 acres

Swing school for 4 years

Compressed schedule – set budget

Typical Schedule

MONTHS

Schedule

MONTHS

Integrated Design

Site Analysis

Solar Access Daylighting Winter winds Neighborhood connections

Design Review CITY OF BEAVERTON

Building orientation

Vehicular access

Pedestrian connectivity

Site topography

Conceptual Program Zoning Studies

Idea Exchange

Idea Exchange Culture Hub

Idea Exchange Culture Hub

Kinetic Center

Idea Exchange

Culture Hub

Kinetic Center

Maker's Lab / Exploration

Idea Exchange

Culture Hub

Kinetic Center

Maker's Lab / Exploration

Core Education

Schedule

MONTHS

Resilience BEAUTY

Resilience

What is a school?

Resilience

ENERGY EFFICIENCY Conserving Resources

R.B.R.A.

Shelter

Water

Food

Power

Communications

SHELTER

Structural Integrity

Primary Structure : Category IV Essential Equip.: seismically certified Essential Equip. + plumbing: Category IV Other non structural items: Category III

Water & Waste

Strengthened connections to Providers Potable Water connection Portable Toilets by others

Power

500 kW Generator 4000 gal fuel supply ~ RT 96hrs

15' 30'

15' 30'

FIRST FLOOR

Main Shelter Areas Ventilation Lighting Limited Power

15' 30'

FIRST FLOOR

Main Shelter Areas Ventilation Lighting Limited Power

Main Office Communications Lighting Limited Power LAN Security

15' 30'

FIRST FLOOR

Main Shelter Areas Ventilation Lighting Limited Power

Main Office Communications Lighting Limited Power LAN Security

SECOND FLOOR

Aux Shelter Areas Operable Windows Emergency Lighting

Site Strategy Immediate Use Students/Staff 96+ hrs

Site Strategy Immediate Use Students/Staff 96+ hrs

3 - 30 daysCommunity ShelterDistribution CenterCamp Area

Site Strategy Immediate Use Students/Staff 96+ hrs

3 - 30 daysCommunity ShelterDistribution CenterCamp Area

Beyond 30 days Resume Classes Distribution Center Camp Area Modular shower

Solar Photovoltaics

MILLES .

R-BRA

Resilience

Schedule MONTHS

Resilient Features

LED LIGHTING

MECHANICAL

PV ARRAY

Cut wattage by **50%** throughout building.

SEISMIC RISK

Primary Structure designed to IV

WATER & WASTE

Strengthened Add H2o valve

Gymnasiums and Commons HVAC on emergency generator with **4,000 gallon** capacity, 96 hr run time. Limited power Resilient electric hot H2o for kitchen

Total capacity is **128kW**.

Generates **129,616 kWh** per year.

COMMUNICATIONS

District radios LAN, Security

Y2016 PROJECT EUI

Thank you!

Thank you!

Kurt Zenner AIA LEED AP kzenner@mahlum.com

STRUCTURAL	LANDSCAPE	FOOD SERVICE
KPFF Consulting Engineers MEP	Cameron McCarthy	Halliday Associates
	CIVIL	THEATER
	Cardno	PLA Designs
Interface Engineering	ACOUSTICS	CMGC
© MAHLUM	Stantec	Skanska
SUSTAINABLE & RESILIENT SCHOOL DESIGN: Implementing the Beaverton School District Plan

David Chesley PE, RCDD, LEED AP Principal Interface Engineering

Resilience Plan & **Electrical:** Leveraging Parts for a Better Whole

- Efficient HVAC and Lighting Expands Coverage
- Triage: Picking the Most Important Loads
- Use of 50-amp Outlets for As-Needed Power Density
- Exploring Use of PV to Extend Generator Run time

Impact of More Efficient Lighting on Generator

	Baseline (EUI 48)	Actual (EUI 38)	NOTES
Telecom/security	60kW	60kW	Includes door hardware
Water heater / boilers/ pumps	80kW	80kW	Central plant heating (if nat'l gas available) plus elec water heater for kitchen
Emergency ltg / fire alarm	20kW	10kW	Lighting code 1.01W/SF; actual: 0.43W/SF
Elevators	62kW	62kW	
Main Gym	91kW	60kW	Ventilation / LED ltg
Aux Gym	40kW	15kW	Ventilation / LED ltg
Lockers	56kW	31kW	Ventilation / LED ltg
Commons / Kitchen	157kW	74kW	Ventilation / LED ltg
Main Office	68kW	36kW	Ventilation / LED Itg
Site Lighting	20kW	4kW	LED lighting
TOTAL	654kW	432kW	

Heavy duty outlets for power density when needed

- Temp power when needed for food warmers, med equipment, etc.
- Two flush boxes located inside commons area, both on standby power.
- Two flush boxes located just outside commons area, both on standby power.
- 208-volt, 3-phase, 50-amp at each outlet equals 14.4kW at each location.

gasketed lift cover.

- Compact electronic supervisory circuit.

- Detailed wiring diagram.
- TYPE 3R metallic enclosure and heavy duty, abuse resistant legs.

Use of load bank to extend generator life

- NFPA 110 (Standards for Emergency & Standby Generators) and monthly testing
- NFPA 110, 8.4.2 recommends generators testing under load >=30% nameplate KW
- Avoid fuel and soot build-up (wet-stacking); burn fuel more efficiently

Exploring PV for Extending the Fuel Supply

PV Inverter Choices for Higher Efficiency

- Grid interactive for synchronizing voltage and frequency
- Micro-inverters help combat shading (the flashlight battery analogy)

SMA Tripower Inverter (grid-interactive)

Enphase 250-watt (micro-interter)

Exploring PV for Extending the Fuel Supply

Exploring PV for Extending the Fuel Supply

Load Bank for Exercising Genset

STANDBY POWER PANEL

GENSET **500kW DIESEL GENSET** PV ATS PANEL INVERTERS **96 HR BELOW GRADE FUEL TANK** LOAD EMERGENCY ATS BANK LOADS UTILITY MAIN SWITCHBOARD XFMR **PV ARRAYS**

Work in Progress: Lessons Learned on PV/Generator Design

Protective relays: reverse power flow on generator
Engaging utility and code officials early in design
Approved sources of power under NEC Article 700 and 702
Generators and the 35% rule (adding future loads)