Making and Saving Energy on the Path to Net Zero: Best Practices and Tools for Affordable Multifamily Housing

Energy Trust of Oregon Net Zero Fellowship Presentation

Rob Roy Pacific Crest Affordable Housing

Ben Bergantz Pacific Crest Affordable Housing

Greg Collins Zero Envy

Agenda

Net Zero Fellowship Presentation Agenda

1) Introduction

- 2) Pacific Crest's Approach to Sustainability
- 3) Research Goals & Methods
- 4) Research Results
- 5) Recommendations
- 6) Acknowledgements

1. Introduction

Introduction

Pacific Crest Affordable Housing

- For-profit developer based in Bend, OR building affordable housing since 2005
- Eight completed affordable multifamily apartment properties, located in Central Oregon, offering 331 total units
- Properties serve households earning 60%
 Area Median Income and below
- The four most recent projects were certified Earth Advantage Platinum

Introduction

Rob Roy, Founding Partner & Co-Operating Manager, PCAH

- 23 years of experience in construction and real estate development in Oregon
- 18 years previous experience in the field in Canada
- 3-time Olympic snowboard coach for both USA and Canada

2002 Winter Olympics, Salt Lake City

2. Pacific Crest Approach to Sustainability

Sustainability

Pacific Crest Affordable Housing

Mission Statement:

Our mission is to provide high quality, comfortable, and stable housing which our tenants are proud to call home, and <u>to contribute to the advancement of</u> <u>sustainable building</u> in affordable housing development.

Bringing a Developer Perspective to Sustainability

Need to justify dollars spent on energy performance through projected energy cost savings...

...by aiming to optimize investments and maximize value...

...by remaining a long-term owner, helping to ensure that the projects maintain financial sustainability by keeping operating costs lower.

Need to make project decisions in real-time, often under the constraints of budget, time and information.

Sustainability

Sustainability Design

Energy Efficiency Measures (EEMs) = "Save Its"

Whole-building energy efficiency

Design highlights:

- Central HVAC Variable Refrigerant Flow w/ERV
- Central hot water w/solar thermal pre-heat
- High-heel Truss Design
- Thermal Breaks Windows, Doors and Top Plates (built on-site)
- Cold roof, 6/12 pitch, code x2 ventilation

Sustainability Design

Renewable Energy Production = "Make Its"

> Properties are master metered with net metering, utilities are included in the rents

2024 Pacific Crest Affordable Housing, LLC

Sustainability

Sustainability Beyond Energy

Pacific Crest Lavender & Honey

Lavender sequesters carbon in plant root structure and provides habitat for pollinators

Approach

Pacific Crest's "Save It" & "Make It" Spreadsheet

NPVs of Energy Savings

	OR	Code Minimum vs IronHorse 1
Assumptions		Comments
Energy Savings [kWh/SF/Yr]	9.2	Compared to OR Code Min Multifamily Bldg
Energy Cost Inflation Adjuster [%/Yr]	3.25%	CAGR - Oregon Retail Rate 2003 - 2014
Energy Cost 1st Yr [\$/kWh]	0.137	Pacific Power OR Sch 28 (No Facilities Charge)
Gross Building Square Footage [SF]	27,540	IHL Actual GBSF
Discount Rate [%/Yr]	4.00%	Market Driven (WACC - Cost of Capital)
EEMs* 1st Costs w/o Incentives[\$]	242,431	Data Assembled for ETO-PTNZ (Qualifying Costs)
EEMs Incentive Amount	119,639	Data Assembled for ETO-PTNZ & After Tax
EEMs 1st Costs w /Incentives	122,792	Calculated Intermediate Result
Renewables** 1st Costs w/o Incentives [\$]	271,417	Actuals (64.09 kW PV & 12 Panel Thermal)
Renewables Incentive Amount [\$]	212,667	Market Driven & After Tax
Renewables 1st Costs w/ Incentives [\$]	58,750	Calculated Intermediate Result
Toatl 1st Costs [\$] w/o Incentives [\$]	513,848	Calculated Final Result
Total 1st Costs [\$] w/ Incentives [\$]	181,542	Calculated Final Result
* EEMs = Energy Efficiency Measures (Save It)		* ETO-PTNZ = Energy Trust of Oregon Path to Net Zero

Color Code
Assumptions
Inputs &
Results
Calculated
Actuals or
Proforma
Results

Spreadsheet developed between 2013 and 2015 as an in-house tool to evaluate proposed energy investments and guide decision-making.

Key Inputs:

- Estimated energy savings
- Incremental costs
- Utility rates
- Financial incentives

Key Outputs:

- Life Cycle Cost Analysis
- Net Present Value
- Save vs Make cost per kWh comparison

LEIVIS - LIICIBY	Linclency wiedsures	(Jave IL)
** Renewables =	Solar PV & Thermal	(Make It)

Other Inputs	Conversion k	BTUs>KWh	kW/b/Vr/Pldg		
Energy Usage/SF/Yr & /Yr/Bldg	kBTU/SF/Yr	kWh/SF/Yr	KWN/11/Blug		
OR Code Minimum Bldg (OCM)*	41.0	12.0	330,918		
IronHorse Lodge 1 Bldg (IHL)**	9.6	2.8	77,483		
Energy Savings IHL vs OCM	31.4	9.2	253,435		

* Typical OCM Multifamily EUI of 41.0 Provided By Energy Trust of Oregon

** PTNZ Goal Based on Model-Projected IHL Multifamily EUI of 9.6 Energy Trust of Oregon

Detriments (-) & Benefits (+) Flow*	0	1	5	6	10	20	30	40
Net Detriments & Benefits [\$/Yr]	(181,542)	34,642	39,370	40,650	46,197	63,609	87,583	120,592
Cumulative Detriments & Benefits [\$]	(181,542)	(146,900)	3,300	43,950	220,196	773,346	1,534,976	2,583,660
Breakeven [#Yrs]			B/E					

* w/ Incentives 1st Costs Only (No Operating or Replacement Costs)

NPVs of Detriments & Benefits Flow	(D&BF)
20-Yr Net Present Value [\$] D&BF	423,972
30-Yr Net Present Value [\$] D&BF	692,273
40-Yr Net Present Value [\$] D&BF	941,842
Breakeven [# Yrs]	5

ave vs Make	Save.Make	w/o Ince	ntives [\$]	w/ Ince	entives	
\$/kWh	kWh/Yr	1st Cost	\$/kWh	1st Cost	\$/kWh	
Save It	130,681	\$ 242,431	\$ 1.86	\$ 122,792	\$ 0.94	IM
Make it	122,754	\$ 271,417	\$ 2.21	\$ 58,750	\$ 0.48	
Combo	253,435	\$ 513,848	\$ 2.03	\$ 181,542	\$ 0.72	

Conversion 1 kBTU --> kWhs 0.29307107

Approach

Progressively Larger Solar PV Systems

Mountain Laurel Lodge 54 Units - Bend, OR

Discovery Park Lodge 53 Units - Bend, OR

Little Deschutes Lodge 1 26 Units - La Pine, OR

Little Deschutes Lodge 2 26 Units - La Pine, OR ★ First Spreadsheet ★

IronHorse Lodge 26 Units - Prineville, OR

Azimuth 315 50 Units - Bend, OR

Canal Commons One & Two 96 Units - Bend, OR

18.3 kW Solar PV

2006

2016

64.09 kW Solar PV

2024 Pacific Crest Affordable Housing, LLC

Post-construction

Predicted Energy Use vs. Actual Energy Use

2024 Pacific Crest Affordable Housing, LLC

3. Research Goals & Methods

Research Goals

1) Understand the difference between pre-construction energy performance estimates and actual energy performance.

2) Evaluate which energy efficiency and renewable energy systems were the best long-term investments.

3) Develop guidance and resources for others seeking to evaluate the impacts of energy efficiency measures and renewable energy systems over the lifespan of their projects.

Research Focused On Three Properties

IronHorse Lodge

Prineville, OR 26 Units Seniors 55+ Completed 2016

Azimuth 315

Bend, OR 50 Units Workforce & Family Completed 2019

Canal Commons One

Bend, OR 48 Units Workforce & Family Completed 2020

2024 Pacific Crest Affordable Housing, LLC

Research Goals

IronHorse Lodge

Senior 55+

26 units: 1- and 2-bedrooms

Energy Performance Features:

Renewable Energy Production:

• 64 kW Solar Photovoltaic system

Energy Efficiency Measures:

- 12-Panel Solar Thermal hot water system
- LED Lighting with occupancy sensors
- ENERGY STAR Appliances
- Variable Refrigerant Flow ductless heating and cooling system with Energy Recovery Ventilator
- Insulated Concrete Form walls
- Building Envelope:
 - Attic insulation R-60
 - Wall insulation R-30
 - Windows U-0.25
 - Doors R-5
 - Reduced Infiltration (3.4 ACH50)

Certified Earth Advantage Platinum

Azimuth 315

Workforce & Family

50 Units: 1- and 2-bedrooms

Energy Performance Features:

Renewable Energy Production:

• 107 kW Solar Photovoltaic system

Energy Efficiency Measures:

- 16-Panel Solar Thermal hot water system
- LED Lighting with occupancy sensors
- ENERGY STAR Appliances
- Variable Refrigerant Flow ductless heating and cooling system with Energy Recovery Ventilator
- Wood frame with double-stud walls
- Building Envelope:
 - Attic insulation R-60
 - Wall insulation R-30
 - Windows U-0.25
 - Doors R-5
 - Reduced Infiltration (3.5 ACH50)

Certified Earth Advantage Platinum

Canal Commons One Workforce & Family 48 Units: 1-, 2- and 3-bedrooms

Energy Performance Features:

Renewable Energy Production:

• 149 kW Solar Photovoltaic system

Energy Efficiency Measures:

- 16-Panel Solar Thermal hot water system
- LED Lighting with occupancy sensors
- ENERGY STAR Appliances
- Variable Refrigerant Flow ductless heating and cooling system with Energy Recovery Ventilator
- Wood frame with double-stud walls
- Building Envelope:
 - Attic insulation R-80
 - Wall insulation R-30
 - Windows U-0.29
 - Doors R-2
 - Reduced Infiltration (2.44 ACH50)

Certified Earth Advantage Platinum

2024 Pacific Crest Affordable Housing, LLC

"Why is energy use so much higher than predicted?"

Are the solar PV systems working as designed?▶ Review solar production data

Pre-construction energy models overly optimistic?Questions about energy modeling results

Energy efficiency measures underperforming?Can be difficult to assess post-construction

Research Goal #1: Understand the difference between pre-construction energy estimates and actual energy performance.

Research methods:

- Gather and review measured energy data to quantify performance
- Conduct calibrated energy modeling based on measured energy usage and other available data to validate the actual savings of the project's energy efficiency measures.
 - Electric and natural gas
 - Solar PV production
 - Mitsubishi VRF submeter for central HVAC system
 - Leviton submeter for in-unit electrical demand (appliances & plug loads)
 - Onsite staff observations

Research Goal #2: Evaluate which measures and systems were the best long-term investments.

Research methods:

- Update Pacific Crest's financial models with the calibrated modeling results and updated incremental costs and utility costs to re-evaluate investments in energy performance.
- Hold a resident listening session to incorporate resident feedback and perspectives
- Incorporate factors beyond energy savings such as resilience, operations and maintenance, and the ability to monitor and measure system performance into measure and system evaluation

Research Goal #3: Develop guidance and resources for others seeking to evaluate energy performance investments over the lifespan of their projects

Research methods:

- Through the process of updating the financial models, evaluate the strengths and weaknesses of the PCAH spreadsheet as a tool and as an approach
- Adapt the spreadsheet to a user-friendly format and incorporate peer review feedback into a template to be available on the Energy Trust website

Original spreadsheet

User-friendly template

4. Research Results

Research Results: Goal #1

Goal #1: Understand difference between pre-construction and actual energy performance.

Solar PV Performance

• Solar PV data (previous 12 months) showed performance in-line with pre-construction estimates; the systems were performing as designed

Project	PVWatts Annual kWh	Measured Annual kWh (Oct 2022 – Oct 2023)
IronHorse Lodge	95,254	93,525
Azimuth 315	145,246	153,748
Canal Commons One	213,211	181,033*

*Canal Commons One had a PV outage in 2023. The average annual solar PV production for the previous two years was 216,900 kWh per year (102% of PVWatts estimate).

Calibrated Energy Model Steps

- Created a new energy model for Canal Commons One based on as-built design
 Design drawings, submittals, etc.
- 2. Collected & analyzed data
 - Utility bills + PV monitoring data
 - Submetering & VRF data was not usable
 - Onsite observations (confirmed open windows, no signs of mechanical issues or other issues)

Image of the 3D energy model developed for Canal Commons One in IESVE software:

2024 Pacific Crest Affordable Housing, LLC

Calibrated Energy Model Steps

3. Model was calibrated to align with measured data

- Actual weather file
- Increased hot water usage, adj. incoming water temps
- Temp setpoints, increased infiltration, increased plug loads, open windows, and more

Calibrated energy model vs. actual energy consumption (electricity and natural gas)

2024 Pacific Crest Affordable Housing, LLC

Updated Energy Savings Comparison

The calibrated model baseline energy was much higher than the pre-construction model.

EEM savings increased since they were determined from a higher baseline.

Pre-construction energy model

Calibrated energy model

* Calibrated EUI of 36.2 does not include open windows in updated savings estimates.

Research Results: Goal #1

Calibrated Energy Model EUI Gap

Calibration helped to identify a rough breakdown of the EUI gap (actual vs. predicted)

Would be more accurate if submetering data was available

Goal #2: Evaluate the best long-term investments for the three Pacific Crest projects

Energy Efficiency Measures

- Specific EEMs performed better in the updated analysis:
 - LED lighting and controls
 - Reduced infiltration measures
 - Solar thermal hot water
 - Ductless Variable Refrigerant Flow (VRF) system with ERV
- Beyond the energy analysis, would compare alternatives to the central VRF system and evaluate tradeoffs in terms of cost, complexity, and resilience.

Every project is different and will have different measures that perform best in terms of payback. Value is also influenced by construction costs, incentives, and utility costs.

Overall, the updated financial models showed that Pacific Crest's energy investments represented a good value

Canal Commons One updated financial model

Summary of Inputs						Mod Template	el Output e Version 10/15,	t s /24					
Project Information		Net Annual Be	nefit					Energy U	se Intensity (I	EUI)			
Property Name	Canal Commons One	Total kWh Saved (kWh)	498,455	\$56,824		Base	line (Code M	linimum) Pro	ject EUI	96.2	kBTU/sf/year		
Total Building Square Footage (sf)	44,916	Total Therms Saved (Therms)	3,830	\$4,592		Can	al Commons	One	Net EUI	36.0	kBTU/sf/year		
Cost of Energy		Total kWh Offset (kWh)	181,633	\$20,706						•			
Electric Utility Rate (\$/kWh)	\$0.114	Net Annual Benefit (first ye	ear)	\$82,122									
Net Meter Credit Ratio Adjuster (%)	100%				8								
Natural Gas Utility Rate (\$/Therm)	\$1.199	Life Cycle Cost Analysis*						#Yea	ars				
Annual Energy Usage & Proc	duction	(Net Detriments and Benefits Flow)	0	1	2	3	4	5	6	10	20	30	40
Code Minimum Building Electricity (kWh)	948,284	Net Detriments & Benefits [\$/Yr]	-\$701,074	\$82,122	\$84,791	\$87,547	\$90,392	\$93,330	\$96,363	\$109,514	\$150,790	\$207,622	\$285,873
Proposed Electricity Usage (kWh)	268,196	Cumulative Detriments & Benefits [\$]	-\$701,074	-\$618,952	-\$534,161	-\$446,614	-\$356,222	-\$262,892	-\$166,529	\$251,276	\$1,562,562	\$3,368,065	\$5,854,050
Code Minimum Building Natural Gas (Therms)	10,833	Break-Even [#Yrs]											
Proposed Natural Gas Usage (Therms)	7,003	*Does not include equipment lifespans and	replacement co	sts, which affe	ct the project	ed payback at	longer timeli	nes. able below		-	•	•	· · · · ·
Estimated Renewable Energy (kWh)	181,633	Break Even may be maden in the Econ a	able because the			re is displayed		ibic below.					
Estimated Renewable Energy (Therms)	0	NPVs of Life Cycle Cost Ana	alysis			Sava ve M	aka ¢/kWh			w/o Incer	ntives [\$]	w/ Incen	tives [\$]
Project Costs		20-Yr Net Present Value [\$]	\$744,755			Save vs. ivi	ake ş/kwn		KVV N/ TI	1st Cost	\$/kWh	1st Cost	\$/kWh
Incremental Costs of EEMs (\$)	\$937,937	30-Yr Net Present Value [\$]	\$1,380,785			Sav	e It*		610,674	\$ 937,937	\$ 1.54	\$ 628,313	\$ 1.03
Renewable Energy System Costs (\$)	\$322,910	40-Yr Net Present Value [\$]	\$1,972,407			Ma	ke It		181,633	\$ 322,910	\$ 1.78	\$ 72,761	\$ 0.40
Financial Incentives		Break-Even [# Yrs]	8			Сог	mbo		792,307	\$ 1,260,847	\$ 1.59	\$ 701,074	\$ 0.88
Energy Efficiency Incentives Total (\$)	\$309,624			-	*Includes sol	ar thermal & I	DHW savings o	converted from	n Therms to kW	h			
Renewable Energy Incentives Total (\$)	\$250,149												
Financial Assumption	s												
Energy Cost Inflation Adjuster [%/Yr]	3.25%												
Discount Rate [%/Yr]	4.00%												

Original Break-Even = 5 Years

Updated Break-Even = 8 Years

2024 Pacific Crest Affordable Housing, LLC

Making The Case For Solar PV

With incentives factored into the analysis, the total cost to make an additional kWh of energy was much less on these projects than the total cost to save an additional kWh of energy.

Solar incentives included Energy Trust Solar PV, ODOE-RED grant, Federal Investment Tax Credit, 100% Bonus Depreciation (federal and state)

Save vs. Make \$/kWh	kWh /Vr	w/o Ince	ntives [\$]	w/ Incentives [\$]				
Save vs. wake \$7kwm		1st Cost	\$/kWh	1st Cost	\$/kWh			
Save It*	610,674	\$ 937,937	\$ 1.54	\$ 628,313	\$ 1.03			
Make It	181,633	\$ 322,910	\$ 1.78	\$ 72,761	\$ 0.40			
Combo	792,307	\$1,260,847	\$ 1.59	\$ 701,074	\$ 0.88			

Updated Canal Commons One Make vs. Save comparison:

Solar PV non-energy benefits:

- Reliably predict solar PV production using PVWatts (within 5%)
- We know how much the system is producing and get alerted when there is an issue
- Protect against increases in the cost of electricity

Resident Listening Session

A listening session took place with 12 residents, research team members, building architect, Energy Trust

- Feedback on specific systems
 - Satisfied with hot water, lighting.
 - Central VRF system benefits from education
 - Information to residents—some interested in saving energy, some not interested
- Focus on resilience
 - Power outages
 - Wildfires
- Keep health, safety, and comfort at the center of decision-making

Research Goal #3: Develop guidance and resources for others seeking to evaluate energy performance investments over the lifespan of their projects

Evaluate and adapt the PCAH spreadsheet

- The research team assessed that the PCAH spreadsheet offered useful outputs when given accurate inputs.
- The team adapted the original into a user-friendly format and enlisted peer reviewers for feedback.
 - Not a perfect tool! Through the evaluation and peer review process, the team identified several areas for expanding and improving the tool that were ultimately not implemented due to research scope and timeline. The "Make It & Save it" approach demonstrates a process for others to utilize that can be built upon in the future.

Key points:

- Design based on PCAH approach (master metered building, with net metering)
- Utility rates use average cost per kWh
- Life-Cycle Cost Analysis does not include equipment lifespans and replacement costs

Make It & Save It Template

Workflow — Energy Worksheet

Cost Worksheet

Incentives Worksheet

User inputs Auto-filled from workheets Calculated results Default assumptions

Measure Selection Tool

Instructions: Salect CDMs and renaw	shier to include	in the rename	d amiert soale	is he adapting	The Tor This Tip	And Little	r				
the include Measure column. The wo	oksheet will au	tomatically cale	ubte outputs b	ased on the sel	ected measures	Userinputs					
and populate the Output Dashboard	tab. This tool is	designed to a	low the user to	compare and e	valuate measures	Auto-filled from worksheets					
nurvousity, in confortation and again		-ease 65 202	gazeros fair theo	every and to	urrear reguliCit (1).	Calculated results					
						Default assumptions					
for	ry Efficiency	Measures	FFMs) Select	inn							
Energy Efficiency Measure (EEM)	kWh Saved	Theorea Saved	EEM Costs	Cost per kWh Saved*	include Measure (Select Yes/No)	Incremental Costs and Annual Energy w/ Selected Measures	Incremental Cost	Electridity (kWh)	Natural Gas (Theores)	EUI	% Baselin
Attic Insulation (R38 -> R80)	7,142		\$12,485	\$1.75	Yes	Baseline (Code Minimum) Project	50	948,284	10,833	96.8	100%
Exterior walls (U-0.064> 0.035)	29,849	0	\$120,645	\$2.02	Yes	Canal Commons One	\$1,260,847	268,196	7,003	36.2	37%
Windows (U-0.25/5-0.42> U- 0.28/5-0.21)	2.562	0	\$45,661	\$17.82	Yes.						
0oors (U-0.7 -> 0.5)	9.762		\$41,249	\$4.22	Yes	Proposed Energy Savings and Offsets F	om Baseline]			
Reduced infiltration (6.5> 3.5 ACH501	177.521	0	\$87.980	\$0.50	Yes	"Save its" (EEMs)	48%	1			
Interior lighting (0.58> 0.38 W/ft2]	18,991	0	\$5,419	\$0.29	Yes	"Make its" (Renewables)	14%	1			
Exterior lighting (5.1 -> 1.7 kW)	16,230	0	\$14,575	\$0.90	Yes	Total Energy Savings & Offsets	63%	1			
ENERGY STAR Applances	2,339	0	\$47,516	\$20.31	Yes						
HVAC: PTHP> VRF w/ ERV	225.055		\$445,845	\$1.98	Yes	"Make its" and "Save its"	Without In	centives	With Inc	entives*	
Condensing water heater + solar thermal	(995)	3,820	\$116,562	\$1.05	Yes	Cost per kWh	Set Costs	\$ per kWh	1st Costs	\$ per kWh	1
						"Save its" (EEMs)	\$937,937	\$1.54	\$628,313	\$1.03	1
						"Make its" (Renewables)	\$322,910	\$1.78	\$72,761	\$0.40	1
Totals w/ Selected EEMs	498,455	3,830	\$937,937	\$1.54		Combined "Make its" & "Save its"	\$1,260,847	\$1.59	\$701,074	\$0.88	1
	enewable Er	nergy Syster	ns Selection			* incentives can be entered on the incentiv	es Worksheet 5	ab .			
Renewable Energy System	kwh Produced	Theoms Produced	System Cost	Cost per kwh Made	Include System (Select Yes/No)		Un	it Conversi	ons	1	1
Solar PV	181.633		\$322.910	\$1.78	Yes		Conver	sion 1 kBTU	>kWhs	0.2930711	1
							Conven	ion 1 therm -	⇒k⊈⊓u	99.9761	1
							Conven	ion 1 therm -	-> kWhs	29.3001	1

Output Dashboard

Summary of Input:	1					Mod	el Output	IS (24					
Desire the forward of		Net Annual 8	enefit	T			Energy U	se Intensity (EUI)		ſ		
Property Name	Canal Commons One	Total kWh Saved (kWh)	498,455	\$63,802		Base	line (Code N	linimum) Pro	ject EUI	96.8	kBTU/sq ft/year		
Total Building Square Footage (sq ft)	44,618	Total Therms Saved (Therms)	3,830	\$4,592	1	Can	al Commons	One	Net EUI	36.2	kBTU/sq #/year		
Cost of Energy		Total kWh Offset (kWh)	181,633	\$23,249	1								
Electric Utility Rate (\$/kWh)	\$0.128	Net Annual Benefit (first y	ear)	\$91,643	1								
Net Meter Credit Ratio Adjuster (%)	100%				•								
Natural Gas Utility Rate (\$/Therm)	\$1.199	Life Cycle Cost Analysis*						#Yea	n				
Annual Energy Usage & Pro	duction	(Net Detriments and Benefits Flow)	0	1	2	3	4	5	6	10	20	30	40
Code Minimum Building Electricity (kWh)	948,284	Net Detriments & Benefits [\$/Yr]	-\$701,074	\$91,643	\$94,622	\$97,697	\$100,872	\$104,151	\$107,535	\$122,211	\$168,272	\$231,693	\$319,017
Proposed Electricity Usage (kWh)	268,196	Cumulative Detriments & Benefits [\$]	-\$701,074	-\$609,431	-\$514,809	-\$417,112	-\$316,239	-\$212,089	-\$104,553	\$361,692	\$1,825,008	\$3,839,840	\$6,614,050
Code Minimum Building Natural Gas (Therms)	10,833	Break-Even [#hts]											
Proposed Natural Gas Usage (Therms)	7,003	*Does not include equipment lifespans and	d replacement co	sts, which affect	the projected	f payback at lo	nger timeline	s.					
Estimated Renewable Energy (kWh)	181,633												
Estimated Renewable Energy (Therms)	0	NPVs of Life Cycle Cost An	alysis	1					1000.00	w/o Inc	entives [\$]	w/Incer	ntives [\$]
Project Costs		20-Yr Net Present Value [\$]	\$909,258			21/10 V3. M	ane s/kwn		KWN/TF	1st Cost	\$/kWh	1st Cost	\$/kWh
	\$937,937	30-Yr Net Present Value [5]	\$1,619,029			Sav	e It ^a		610,674	\$ 937,937	\$ 1.54	\$ 628,313	\$ 1.03
Incremental Costs of EEMs (\$)						Ma	ke It		181,633	\$ 322,910	\$ 1.78	\$ 72,761	\$ 0.40
Incremental Costs of EEMs (\$) Renewable Energy System Costs (\$)	\$322,910	40-Yr Net Present Value [\$]	\$2,279,244								4	£ 703.074	£ 0.88
Incremental Costs of EEMs (\$) Renewable Energy System Costs (\$) Financial Incentives	\$322,910	40-Yr Net Present Value [\$] Break-Even (# Yrs]	\$2,279,244 7			Cor	nbo		792,307	\$ 1,260,847	\$ 1.59	3 701,074	2 0.00
Incremental Costs of EEMs (\$) Renewable Energy System Costs (\$) Financial Incentives Energy Efficiency Incentives Total (\$)	\$322,910 \$309,624	40-Yr Net Present Value (\$) Break-Even (# Yrs)	52,279,244		*includes sol	Cor ar thermal &	nbo DHW savings	converted from	792,307 In Therms to kill	\$ 1,260,847	\$ 1.59	3 702,074	3 U.M.
Incremental Costs of EEMs (\$) Renewable Energy System Costs (\$) Financial Incentives Energy Efficiency Incentives Total (\$) Renewable Energy Incentives Total (\$)	\$322,910 \$309,624 \$250,149	40-Yr Net Present Value (\$) Break-Even (# Yrs)	52,279,244 7		*Includes sol	Cor ar thermal &	nbo DHW savings	converted from	792,307 n Therms to kW	\$ 1,260,847	\$ 1.59	3 702,074	<i>y</i> 0.00
Incremental Costs of EEMs (\$) Renewable Energy System Costs (\$) Financial Incontives Energy Efficiency Incontives Total (\$) Renewable Energy Incontives Total (\$) Financial Assumption	\$322,910 \$309,624 \$250,149 \$	40-Yr Net Present Value (5) Eceal-Even (4 Yrs)	52,279,244		*Includes sol	Cor ar thermal & I	nbo DHW savings	converted from	792,307 n Therms to KM	\$ 1,260,847	\$ 1.59	3 702,074	<i>y</i> 0.4
Incremental Costs of EEMs (5) Renewable Energy System Costs (5) Financela Incentives Energy Efficiency Incentives Total (5) Renewable Energy Incentives Total (5) Financial Assumption Energy Cost Inflation Adjuster (5/17)	\$322,910 \$309,624 \$250,149 \$ 3.25%	40-Yr Net Present Value (\$) Break-Even (# Yrs)	52,279,244		*Includes sol	Cor ar thermal & i	nbo DHW savings-	converted from	792,307 n Therms to KWI	5 1,260,847	5 1.59	700,074	3 0.00

Considerations for using the template

There is inherent uncertainty in long-term projections. PCAH applied a rule of thumb that a project still needs to represent acceptable value at 80%.

Focus on the measures that are clear winners and implement those measures.

One method suggested by the Make It & Save It approach:

- 1. Solar PV should be prioritized from the start of a project, with initial site selection
- 2. Any energy efficiency measures that rate more highly than solar PV should be considered
- 3. Additional measures decided on case by case basis

5. Recommendations

Recommendations for project design

Consider solar PV from the start

- Site selection, building orientation, available roof space should all be taken into consideration
- Maximizing available incentives can make solar PV inexpensive from a project and developer standpoint

Energy Efficiency Measures

- The top EEMs are different for each project, find clear winners and focus on implementing them at scale
- Consider systems with the ability to self-monitor and communicate, or features that minimize dependence on the "human factor" for energy performance
- Post-construction verification activities, such as commissioning and blowerdoor testing, can help ensure successful construction outcomes and buildings that perform as designed

Recommendations for project design

Iterative design approach

- A consistent team of collaborators and subtrades supports learning over multiple projects
- Ensure all project team members are on the same page and aware of key energy design elements from the start
- Constraints of budget and timeline may mean exhaustive whole building modeling is impractical each development cycle but specific lessons can be learned and applied with each successive project
- Plan ahead of time in order to obtain accurate energy and incremental cost information for evaluating proposed investments

Recommendations for specific measures

- If providing operable windows, consider adding an interlock that turns off the HVAC if it's open, and monitor open periods.
- The solar thermal hot water system performed well for these projects; however, if considering switching to electric heat pumps for water heating, it may be more cost effective to use roof area for additional solar PV instead of adding an extra system for hot water preheat.
- Consider resiliency trade-offs of centralized vs. decentralized systems in terms of impacts of a system outage.
- Higher-rated air filters during wildfire season can add cost and potentially reduce mechanical efficiency but provide health, comfort and safety benefits.
- Systems that communicate and provide alerts when they are not working provide a great benefit and help support optimal building function.

Recommendations for energy & cost estimates

- Determine purpose(s) of energy modeling up-front.
 - ► Incentive-focused model may not accurately predict EUI.
- When engaging an energy consultant, developers should proactively communicate around methods and purposes to increase the likelihood of obtaining useful modeling results.
 - Energy modelers bring different experience, tools, and methods.
- Energy modelers should consider using more conservative assumptions in pre-construction energy models that assume more usage of the building and systems by occupants (assuming future buildings will have similar tenant mix).
 - Plug loads: 0.75 W/ft² (instead of 0.5)

Recommendations for energy & cost estimates

- Consider adopting a "Bid Day" project delivery method, also known as a CMGC Project Delivery method. Baseline cost measures and as-designed cost measures can be requirements of the subcontractors' bids. The "Bid Day" Bids are quite accurate and timely.
- We suggest you GOOGLE: CMGC Project Delivery Method
- More integrated work between energy modeler and cost estimator can ensure costs and energy estimates for EEMs are aligned, and both are using the same baseline and measure assumptions.

Recommendations for building operators

- Optimize performance of all systems by training maintenance staff routinely.
- Embrace operational oversight to help identify issues and reduce response time. Ensure that energy monitoring systems are working as designed.
- Consider purchasing longer subscriptions at the start of the service.
- Consider purchasing extended warranties on the systems.
- Consider purchasing annual service contracts from the installing contractor.
- For Multifamily properties that are master metered, consider ways to increase resident awareness of energy use and incentive to reduce consumption.
 - Provide feedback from submetering
 - Implement a reward system to encourage tenants to reduce energy use
 - Have tenants pay their own utility bills

Recommendations for further research:

- Prioritize submetering to gain further insight into the end uses driving higher-than-predicted energy consumption.
- Evaluate the feasibility of adding battery storage to existing solar PV systems to support resilience, reduce peak energy demand, and maximize benefits of on-site solar.

Thank you, Energy Trust of Oregon!

Acknowledgements

Clayton Crowhurst, Northwest Housing Alternatives Lauren Forman, RMI David Heslam, Earth Advantage Alex Hill, NREL Chris Klug, Klug Properties Jim Landin, LRS Architects Rosanne Lynch, Access Architecture Rachel Naujock, Hacienda CDC Wayne Powderly, Cummings Ryan Shea, RMI Kristy Thompson, SunWest Builders ML Vidas, Energy Trust of Oregon David Wood, Gensco Richard Wright, Custom Plus Heating & Cooling

The research team is grateful for the Azimuth 315 residents sharing their time, questions and feedback.

The team thanks the site staff at Canal Commons One, Azimuth 315 and IronHorse Lodge for their assistance and contributions to the research.

Questions? Let us know!

Email contact: Rob Roy Ben Bergantz Greg Collins

robroy@pacificcrestgroup.org benbergantz@pacificcrestgroup.org gcollins@zeroenvy.com