

Resilient Campus Planning

PRESENTED BY: LAURA SQUILLACE KARINA HERSHBERG JIM WILLEFORD

MARCH 20, 2025

ENERGY TRUST NEW **BUILDINGS TRAINING**

rosevilla.org

pae-engineers.com

Agenda

ENERGY TRUST OF OREGON TRAINING | ROSE VILLA

Introduction Rose Villa Campus

STEP **01**

STEP

02

Set Goals Resilience Action Plans

Analyze Strategies Example: Microgrid Study

STEP **03**

Implement Projects Example: ROSE Port

step **04**

Measure + Share Success Example: Report Outs

Discussion Questions and Answers

CAMPUS VALUES AND COMMUNITY

III III III

-

111

===

利引用

The state of the state of the second

Tala

.

ΗР

INFI

10.1

6 P.O.

ZERO ENERGY DEVELOPMENTS

The Oaks

H

....

Trillium Townhomes

THE OAKS COMMUNITY12 ZERO ENERGY HOMES

STEP 1 Setting Goals **Resilience Action Plans**

Resilience Action Plans

The RAP is a long-range plan that requires **long-range vision** and community buy-in.

The goals and strategies are both aspirational and achievable.

The solutions result in **measurable** advancements and **operational savings.**

The RAP is **coordinated** with capital and master planning; it's a **lens** not a separate project.

Define Resiliency & Clarify Priorities

Set Measurable Goals

	PHASE 1 SET Goals & Strategies END OF 2023	PHASE 2 ANALYZE Scope & Cost END OF 2023	PHASE 3 ACHIEVE Goals & Capital Plan END OF 2025	PHASE 4 ACHIEVE Goals & Assess Progress END OF 2030	PHASE 5 ACHIEVE Goals & Set New Ones END OF 2040
(RESILIENCE	PHASE 1 REPORT Establish RAP Goals and Strategies	PHASE 2 REPORT Strategy Analysis, Cost, and Work Plans	REDUCE Energy Use Marginally BACKUP Energy for 3-5 Days	REDUCE Energy Use by 20% BACKUP Energy for 1-2 Weeks	REDUCE Energy Use by 50% BACKUP Energy for 2-3 Weeks
WATER RESILIENCE	PHASE 1 REPORT Establish RAP Goals and Strategies	PHASE 2 REPORT Strategy Analysis, Cost, and Work Plans	REDUCE Water Use Marginally BACKUP Water & Sanitation 2 Wks	REDUCE Water Use by 13% BACKUP Water & Sanitation 4 Wks	REDUCE Water Use by 25% BACKUP Water & Sanitation 4+ W
↓ STRUCTURAL RESILIENCE	PHASE 1 REPORT Establish RAP Goals and Strategies	PHASE 2 REPORT Strategy Analysis, Cost, and Work Plans	REINFORCE Furniture and Equipment	REINFORCE Pre-1975 Homes	BUILD ROSE Amphitheater

New Regenerative venue and emergency shelter

ROSE = Resilient **O**perations + **S**ustainable **E**nergy

ROSE Strategies achieve RAP Goals

Key Strategies for Energy Resilience

151 ROSE Homes

- Increase insulation, air tightness
- Replace windows, fixtures, equip.
- Add solar and battery systems

4 ROSE Havens

- Optimize generator backups
- Transition to campus microgrid
- Upgrade for energy efficiency

12 ROSE Ports

- Add solar photovoltaic panels
- Add battery back up
- Add EV charging

	REDUCE ENERGY USE GOAL			ENERGY SUPPLY DURATIO		
		~48* kBtu/sf/yr	PHASE 3	3-5 days more if s	sunny	
save 20%		~38 kBtu/sf/yr	PHASE 4	1-2 weeks	more if sunny	
save 50%		~24 kBtu/sf/yr	PHASE 5	2-3 weeks		
		*current energy usage				

1 ROSE Amphitheater

- Solar photovoltaic panels
- Battery backup
- EV charging

N GOAL

more if sunny

Energy Summary

Focus first on least energy efficient buildings as well as building/spaces that are to serve as emergency shelters.

Reduce energy loads with passive efficiency upgrades, then right-size mechanical systems that actively use energy.

Time Solar installs with roof replacements and/or w/ funding opportunities for cost efficiency

Key Strategies for Water Resilience

151 ROSE Homes

- Increase water efficiency w/
- Fixture & equipment replacement
- Store bottled water

4 ROSE Havens

- Add rainwater catchment
- Add rainwater purification
- Store bottled water

12 ROSE Ports

- Add rainwater catchment
- Add rainwater purification
- Store bottled water

	REDUCE WATER USE GOAL		WATER SUPPLY + SAN	ΙΤΑΤΙ
	1,009,870* gal/month	PHASE 3	2 weeks	
save 13%	~878,587 gal/month	PHASE 4	2 weeks or more if rainy	2-4 weeks
save 25%	~757,403 gal/month	PHASE 5	4 weeks or more if rainy	

*current water usage

1 ROSE Amphitheater

- Rainwater Catchment
- Rainwater purification
- Composting toilets

ION GOAL

ks for sanitary

Water Resiliency Summary

1

Invest in water resiliency upgrades using cost savings from lower water bills.

Purifying rainwater is the safest source of renewable emergency potable water supply, compared to filtering greywater or river water.

Human waste management can

be rudimentary during an emergency. Living Machines require too much maintenance and space, and cost too much.

Key Strategies for Seismic Resilience

151 ROSE Homes

- Strap objects to walls
- Seismically reinforce structure
- Install earthquake gas shut offs

4 ROSE Havens

- Strap objects to walls
- Seismically reinforce structure
- Install earthquake gas shut offs

12 ROSE Ports

- Design for Immediate Occupancy
- Seismic Category 4 Standard

PHASE 3		PHASE 4		PHASE	
INCREASE SAFE EVACUATION				INCREASE QUAKE-SAFE PL	
Cottages don't meet seismic code		Secure Objects		No campus buildings meet code for "immediate occu	
Re	trofit TBD% P	re-1975 Cottages	PHASE 4	Consider increasing cottage resiliency from Category	
Ret	rofit Rest of P	re-1975 Cottages	PHASE 5	Retrofit 1+ Haven to meet code for "	

1 ROSE Amphitheater

- Design for Immediate Occupancy
- Seismic Category 4 Standard

5

ACES

upancy"

y II to IV

'immediate occupancy"

Optimize Strategies!

Synchronize strategies

to minimize costs and time during design and construction

Scale strategies

appropriately so that solutions occur at building, neighborhood & campus.

Phase strategies

to increase resiliency over time and align with other campus development

Everyday benefits

to increase resiliency over time and align with other campus development

Emergency Response Plan

Improved **Stockpiles**

Revise ReadyForce Response Guide

Create Campus Response Maps

Supply Water and Sanitation

ONGOING

Host Annual "Refresh" Parties

Improve Sanitation.

Engage Your Community!

Form a resident committee

that provides feedback, analysis and even some implementation of actions

Educate staff and residents

regularly to keep them engaged, informed and supportive of the RAP

Collaborate with change makers and Garner buy-in from your jurisdiction

STEP 2 Analyze Strategies

Microgrids

What is a Microgrid

MICROGRID CONTROLLER

The microgrid controller is the brains that enables all the pieces to act as a unified system. It evaluates inputs from the grid, the onsite energy resources, and the building systems to determine its operating approach. When grid connected, it can leverage building systems to support grid needs. When islanded from the grid, it can balance building systems and onsite energy resources to create a resilience microgrid.

BATTERY ENERGY STORAGE.

Energy storage, often in the form of batteries, are a key component of the microgrid. The specific charge and discharge operations will depend on the prioritization of the battery's use for energy resilience, operating cost reduction, or grid services.

PHOTOVOLTAIC (PV) SOLAR PANELS

PV supports building energy use with onsite energy generation, but is fully dependent on the immediate solar resource. It therefore may not generate enough to cover building loads in some moments and more than is needed in others. Partnering with other solutions, such as a battery, can increase the benefit of PV not just to one building but to the larger grid region as well.

TOTAL HOURLY LOADS IN THE NW GRID REGION

Source: NREL, Cambium 23 Midcase Northern Grid West, Busbar Load

REGIONAL HOURLY LOAD ORDERED FROM LARGEST TO SMALLEST

Considering the Impacts of **Peak Demands**

12/27/2025

Microgrids for Your Existing Campus in Just Three Easy Steps!

operating requirements

Existing Infrastructure Challenges

SECONDARY METERING All infrastructure after the meter is utility owned and operated

PRIMARY METERING All infrastructure after the meter is customer owned and operated

MAP LEGEND

\bigcirc	POWER POLE		
	VAULT		
00	OPEN CONNECTION		
	OVERHEAD 3 PHASE 4/0		
	OVERHEAD 3 PHASE #2 ACSR		
	OVERHEAD 2 PHASE #2 ACSR		
	OVERHEAD 1 PHASE #2 ACSR		
	UNDERGROUND 3 PHASE 1/0		
	UNDERGROUND 1 PHASE #2		
	MISSING INFO		
	UNDERGROUND MISSING INFO		

Yearly Energy Density

Onsite Generation Potential

SOLAR PRODUCTION STUDY RESULTS

Solar Production Study: Results | ROSE VILLA

ONSITE STORAGE STUDY

BATTERY SIZING ESTIMATES

Campus Level

REQUIRED BATTERY CAPACITY

Campus Level No PV REQUIRED BATTERY CAPACITY

Campus Level PASSING DAYS

Campus Level No PV PASSING DAYS

Day of Year

MICROGRID SCALES – CONCEPT OPTIONS

ROSE PORT + MICROGRID ALIGNMENT CHARRETTE

Building

SCENARIO 1 - Single Building

This scenario demonstrates a microgrid on a per-building basis, using a single pocket cottage as an example.

PEAK DEMAND: 45.55 kW

BATTERY CAPACITY: 220 kWh BATTERY OUTPUT: 125 kW BATTERY DIMENSIONS: 5'0"L × 3'0"W × 8'8"H FOOTPRINT: 15 sf per Cottage

Partial Campus

SCENARIO 3 - Partial Campus

This scenario minimizes the number of reclosers but excludes a significant portion of the campus from the microarid.

90TH PERCENTILE 1-DAY USAGE: 11,688 kWh

PEAK DEMAND: 927 kW

BATTERY CAPACITY: 8,255 kWh + 3,440 kWh COMBINED CAPACITY: 11,696 kWh

BATTERY OUTPUT: 1.500 kW

BATTERY DIMENSIONS: 70'0"L × 15'0"W × 9'0"H 39'0"L × 15'0"W × 9'0"H

FOOTPRINT: ~1635 sq ft, excluding 6' clearance between systems and 10' clearance from property line. See map for approximate scale.

BESS BASIS OF DESIGN: ELM Microgrid

Neighborhood

SCENARIO 2 - North Classic Cottages

This scenario demonstrates a single neighborhood microgrid, minimizing reclosers but excluding a significant portion of the campus from the microgrid.

90TH PERCENTILE 1-DAY USAGE: 1,400 kWh

BATTERY CAPACITY: 660 kWh + 880 kWh expansion COMBINED CAPACITY: 1,560 kWh

BATTERY DIMENSIONS: (2) 10'4"L x 6'3"W x 9'3"H

FOOTPRINT: ~130 sq ft, about the size of a parking space BESS BASIS OF DESIGN: ELM Microgrid

LEGEND

	OUT OF MICROGRID
	IN MICROGRID
	BATTERY SYSTEM FOOTPRINT
\bigcirc	MICROGRID RECLOSER ~\$200K EACH
	OVERHEAD 3 PHASE 4/0
	OVERHEAD 3 PHASE #2 ACSR
	OVERHEAD 2 PHASE #2 ACSR
	OVERHEAD 1 PHASE #2 ACSR
	UNDERGROUND 3 PHASE 1/0
	UNDERGROUND 1 PHASE #2
	MYSTERY LINE
	UNDERGROUND MYSTERY LINE

Campus

SCENARIO 4 - Whole Campus

This scenario covers the entirety of the Rose Villa Campus but requires more reclosers.

90TH PERCENTILE 1-DAY USAGE: 15.839 kWh

BATTERY CAPACITY: (2) 8,256 kWh COMBINED CAPACITY: 16 512 kWh

BATTERY OUTPUT: 1,500 kW

BATTERY DIMENSIONS: (2) 70'0"L × 15'0"W × 9'0"H

FOOTPRINT: ~2,100 sf, excluding 6' clearance between systems and 10' clearance from property line. See map for approximate scale.

BESS BASIS OF DESIGN: ELM Microarid

Large BESS

SCENARIO 5 - 20MWh/80MWh Region

This scenario covers the entirety of the Rose Villa Campus plus an unknown amount of the surrounding region, totaling 80MWh and 20MW.

BATTERY CAPACITY: 8.256 kWh COMBINED CAPACITY: 75,304

BATTERY OUTPUT: 1,500 kW COMBINED OUTPUT: 19,500 kW

BATTERY DIMENSIONS: (13) 70'0"L x 15'0"W x 9'0"H

FOOTPRINT: ~14082 sq ft including Control House and Transformer, excluding 6' clearance between systems and 10' clearance from property line See map for approx. scale

BESS BASIS OF DESIGN: ELM Microgrid

STEP 3 Implement Projects

ROSE Port

ROSE Port

NEIGHBORHOOD RESILIENCE HUB

- 4-stall carport (881 sf) for four residents' vehicles
- Existing concrete slab/walls
 of previous bermed garage
- MassPly roof and Glulam beams
- Collects and stores
 solar energy and potable water
- Neighborhood emergency
 hub with backup energy, water,
- Proof of concept
 for ~12 more ROSE Ports on campus

ROSE POT

Resilient Energy Systems

- 17.2 kW solar photovoltaic panels + battery backup
- 27 kW battery system
- Certified Zero Energy by ILFI after 1yr of operation
- Level 1 trickle charging for (4) residents' EV vehicles
- Net metering and meter aggregation

Resilient Water Systems

ROSE PORT

- **950sf** metal roof receives — ~21,000 gallon/year of rainwater - Stored in **3100 gallon** cistern Pumped using PV+battery power - Filtered and purified w/ UV system — For emergency **potable** water use — For some/all residents for 2-4 wks

- Clear pipes for educational purpose

ROSE Port Next Steps

Educational placards

Gathering space

Mural on walls

Campus Resiliency Projects for 2025 and Beyond

Fleet Electrification

INSTALLING 12 EV CHARGERS THROUGH THE MAKE READY PROGRAM

Advancements TV Show

AIRING THIS YEAR ON AMAZON PRIME

Web Dashboard with Resources

WITH EUI DASHBOARD AND OTHER METRICS, EDUCATIONAL RESOURCES

Upcoming Development

NEW ZERO ENERGY NEIGHBORHOODS AND A PASSIVE HOUSE TOWER

Keys to Success

Synchronizing and Scaling Solutions

Laura Squillace laura@greenhammer.com

Karina Hershberg

karina.hershberg@pae-engineers.com

Jim Willeford ROSE VILLA SENIOR LIVING

jwilleford@rosevilla.org